Rajagiri Round Table: Educating India- Listening to Innovative Teachers-76th Rajagiri Round Table  |  Cover Story: A New Era of Instructional Design  |  Best Practices: Continental Hospitals Set up a Super Specialty Clinic in IIT Hyderabad  |  Science Innovations: New cancer treatment developed by MIT  |  Leadership Instincts: Disappearance of Women researchers in Authorship during Pandemic  |  Technology Inceptions: MIT developed a New Successor for Mini Cheetah Robot  |  Science Innovations: IISc team develops novel computational model to predict ‘change blindness’  |  Science Innovations: Immune System Responds Better to Vaccination in Morning Hours  |  Teacher Insights: Training in Childhood Education, New Pedagogy Enabled Innovation in Teaching  |  International Policy: UNESCO Prize for Girls’ and Women’s Education 2021  |  Leadership Instincts: UNESCO Prize for Girls’ and Women’s Education 2021  |  Health Monitor: Intensive therapy better for Cerebral Palsy  |  Parent Interventions: Intensive therapy better for Cerebral Palsy  |  Science Innovations: Intensive therapy better for Cerebral Palsy  |  International Edu News: TutorComp- a new platform for online tutoring in UAE.  |  
May 15, 2019 Wednesday 02:06:43 PM IST

Way to curb greenhouse gas

Science Innovations

New research from the University of East Anglia reveals how soil bacteria build the only known enzyme for the destruction of the potent global warming and ozone-depleting gas nitrous oxide (N2O), also called laughing gas. Some soil bacteria can 'breathe' N2O in environments where oxygen (O2) is limited. This ability is entirely dependent on an enzyme, produced by the bacteria, called 'nitrous oxide reductase', which is the only enzyme known to destroy N2O.  N2O has around 300 times the global warming potential of CO2 and stays in the atmosphere for about 120 years, where it accounts for around nine per cent of total greenhouse gas. It also destroys the ozone layer with similar potency to the now banned chlorofluorocarbons (CFCs). Atmospheric levels of N2O are rising year on year as microorganisms break down heavily used synthetic nitrogen fertilisers added to agricultural soil. The findings have been published in the journal Chemical Science.

Comments