Science Innovations: Target only Harmful Insects on the Field  |  Science Innovations: Submersible Robot Snake  |  Health Monitor: Managing Parkinson’s Disease  |  Parent Interventions: A Healthy Breakfast for Your Child  |  Leadership Instincts: IITH-NIMS Joint Research Centre to be Set up in Japan  |  Teacher Insights: Disruptive Students Affect Teachers’ Well Being  |  Teacher Insights: Old and Young Perfect Friends  |  Science Innovations: Mango Round the Year  |  Science Innovations: Hand Held Device to Detect Dengue  |  Parent Interventions: Political Ad Campaigns Add to Anxiety  |  Policy Indications: Streamlining Compliance in Higher Education  |  Technology Inceptions: Canon Super Telephoto RF Prime L Lenses  |  Technology Inceptions: Boya BY-WM4 Pro Wireless Mic  |  Technology Inceptions: Microsoft Edge Kids Mode  |  Life Inspirations: In Search of Heaven  |  
March 02, 2021 Tuesday 04:45:28 PM IST

Video of ‘dancing DNA’ developed by researchers

Science Innovations

Videos showing for the first time how small circles of DNA adopt dance-like movements have been developed by a team led by researchers at UCL and the Universities of Leeds, York and Sheffield.  The footage is based on some of the highest resolution images of a single molecule of DNA ever captured, with DNA seen to “dance” in microscopy data recorded at the London Centre for Nanotechnology at UCL.  The images show in unprecedented detail how the stresses and strains that are placed on DNA when it is crammed inside cells can change its shape.

Previously scientists were only able to see DNA by using microscopes limited to taking static images. In the new study, published in Nature Communications, the research team combined advanced atomic force microscopy pioneered with supercomputer simulations to create videos of twisted molecules of DNA.

The images are so detailed it is possible to see the iconic double helical structure of DNA, but when combined with the simulations, the researchers were able to see the position of every single atom in the DNA and how it twists and writhes.

Every human cell contains two metres of DNA. In order for this DNA to fit inside our cells, it has evolved to twist, turn and coil – a process called supercoiling. That means that loopy DNA is everywhere in the genome, forming twisted structures which show more dynamic behaviour than their relaxed counterparts.

To investigate how this process works, the research team studied small "packets" of genetic information called DNA minicircles, engineered and isolated from bacteria. DNA minicircles are special because the molecule is joined at both ends to form a loop. This loop enabled the researchers to give the DNA minicircles an extra added twist, making the DNA "dance" more vigorously.

When the researchers imaged relaxed DNA, without any twists, they saw that it did very little. But when they gave the DNA an added twist, it suddenly became far more dynamic and could be seen to adopt some very exotic shapes. These exotic "dance moves" were found to be the key to finding binding partners for the DNA.

Gene therapy is the use of nucleic acids such as DNA to repair, replace, or regulate genes to prevent or treat human disease. In the past few decades, hundreds of gene therapy candidate genes have been uncovered, yet very few of these have turned into target therapies because of the challenge of delivering the gene therapy.

The study also involved researchers from the John Innes Centre, Norwich, the University of Liverpool, and the Baylor College of Medicine in Houston, Texas.

Comments