Health Monitor: Equal Treatment  |  International Edu News: Autistic Children to benefit from new Digital Healthcare Apprentice Support   |  International Edu News: Professor Sir Michael Berry to receive Fudan-Zhongzhi Science Award  |  Policy Indications: Urban Areas Become Centres Of Biodiversity: Macquarie University  |  Parent Interventions: Study highlights failure to recognise risks of epilepsy drug in pregnancy  |  Parent Interventions: Teenage behaviour determines people’s health in later life  |  Parent Interventions: Housing wealth matters for children’s mental health  |  Teacher Insights: Teachers’ wellbeing largely unaffected by lockdown  |  Science Innovations: Covid-19: How machine learning can help to future-proof clinical trials  |  Leadership Instincts: Cambridge researcher named to Time 100 list of world's most influential people   |  International Edu News: Record state school admissions at Oxford  |  International Edu News: Oxford launches online consent programme for students  |  Leadership Instincts: Innovation Conversations; the Vice-Chancellor’s Innovation Awards 2020  |  Career News: Work Culture  |  Education Information: Department of Biotechnology launches a new programme  |  
February 07, 2018 Wednesday 04:02:03 PM IST

Viable Solar Fuel Production in Focus

Science Innovations

7th February, 2018: The Caltech engineers have identified mechanism behind a catalyst that is widely used in water-splitting experiments, which yields hydrogen as a by-product, which opens the door to economically viable solar-fuel production in the next few years.

Fuel cells are researched in detail world over with focus on developing suitable catalyst that splits water into hydrogen and oxygen using only sunlight. Hydrogen thus produced was used in power motor vehicles, plants, and fuel cells. It incurs no carbon-footprint as the only thing produced in the process is water.

The catalyst generally used for the purpose was made of layers of nickel and iron. The way these catalysts work was not fully known. Most researchers made nickel layers responsible for the water- splitting ability.

However, the new results suggest that nickel is not the important component of the catalyst, rather iron! The results are published in the Journal of Sustainable-energy Research.


“Our experimentally supported mechanism is very different than what was proposed,” says Hunter, first author of a paper. “Now we can start making changes to this material to improve it.”

Gray, whose work has focused on solar fuels for decades, says the discovery could be a “game changer” for the field.

“This will alert people worldwide that iron is particularly good for this kind of catalysis,” he says. “I wouldn’t be at all shocked if people start using these catalysts in commercial applications in four or five years.”


Comments