Policy Indications: India’s Impending Growth in Education and Skills Market: A Report  |  Technology Inceptions: Strong Soft Materials are on the Move!  |  Rajagiri Round Table: Learning Through Games-Art and Science of Serious Games  |  Science Innovations: How Nucleoli Exist as Stable Droplets within the Nucleus?  |  Career News: Indian School of Business Inviting application for Aspiring Entrepreneurs  |  Health Monitor: Early Diagnosis and Treatment of Autism Spectrum Disorder Effective  |  Health Monitor: “School Meal Coalition” an Initiative by the UN  |  Policy Indications: WHO’s #HealthyAtHome Challenge for Students  |  Science Innovations: Another Planet Discovery!  |  Higher Studies: Hebrew University of Jerusalem's International Med-Tech Innovation MBA  |  Higher Studies: University of Birmingham Dubai invites applications for M.Sc. Urban Planning  |  Leadership Instincts: UNICEF’s comprehensive statistical analysis finds that nearly 240 million childr  |  Technology Inceptions: Quantum Dots can be Improvised in Tracking Biochemical Pathways of a Drug  |  Technology Inceptions: MIT promotes ‘Back to Bicycles’ with Artificial Intelligence  |  Policy Indications: Cambridge’s New Curriculum matches NEP 2020  |  
October 27, 2021 Wednesday 11:59:42 AM IST

Tissues can be detected Solid, Liquid or Gas – New Innovation by MIT

Technology Inceptions

Researchers at MIT have found that the way in which a tissue’s cells are arranged can serve as a fingerprint for finding the phase of the tissue. Ming Guo and his associates have developed a method to decode images of cells in a tissue to quickly determine whether that tissue is more like a solid, liquid, or even a gas. Their findings are reported this week in the Proceedings of the National Academy of Sciences. The team is applying their method to study and eventually diagnose tumors.

In cancer, there has been evidence to suggest that, like an embryo, a tumor’s physical state may indicate its stage of growth. Tumors that are more solid may be relatively stable, whereas more fluid-like growths could be more prone to mutate and metastasize. The MIT researchers are analyzing images of tumors, both grown in the lab and biopsied from patients, to identify cellular fingerprints that indicate whether a tumor is more like a solid, liquid, or gas. They envision that doctors can one day match an image of a tumor’s cells with a cellular fingerprint to quickly determine a tumor’s phase, and ultimately a cancer’s progression. This work was supported in part by the National Institutes of Health, MathWorks, and the Jeptha H. and Emily V. Wade Award at MIT.