Science Innovations: Laura Kreidberg: Trying to Spot the First Sign of Life Outside Earth  |  Parent Interventions: Don't Let Children Drink Too Much Juice, Sugar Water With Little Nutrients  |  Technology Inceptions: Low-Cost Tissue Freezing Device to Help In Breast Cancer Treatment  |  Science Innovations: Exomoons May Become Quasi-planets  |  Science Innovations: Blue Tongue Lizard Babies As Clever as Adults  |  Parent Interventions: Quality Sleep for Teen Health   |  Technology Inceptions: MIT Develops Artificial 'Muscles' Based on Fibers  |  Career News: UGC-NET June 2019 Results Announced  |  International Edu News: Varsities of G-7 countries form alliance  |  National Edu News: IIITD&M to host world meet on energy  |  Science Innovations: Predictive Data to Help Cancer Patients Know Progress of Treatment  |  Technology Inceptions: DNA Data Storage, Social Robots to Metalenses-Top 10 Emerging Technologies   |  Career News: Civil Services Prelims 2019 Results Published  |  Health Monitor: E-Tattoo To Monitor Your Heart  |  Science Innovations: Making Fertiliser from Brewery Wastewater  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board
  • Pallikkutam Publications

April 06, 2018 Friday 03:50:33 PM IST

The Terahertz Computer Chip is Now Around the Corner

Science Innovations

Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. Two major challenges had thus far stood in the way of the terahertz microchip: overheating and scalability. 

Dr. Levy, head of HU’s Nano-Opto Group, and HU emeritus professor Joseph Shappir have now shown proof of concept for an optic technology that integrates the speed of optic (light) communications with the reliability and commercial scalability of electronics. Optic communications covers all technologies that use light and transmit through fibre optic cables, such as the internet, email, text messages, phone calls, and the cloud and data centres, among others.

Optic communications are exceptionally fast, but in microchips they become unreliable and difficult to replicate on a large scale. Now, by using a Metal-Oxide-Nitride-Oxide-Silicon (MONOS) structure, Levy and his team have designed a new integrated circuit that uses flash memory technology in microchips. Should it work, this technology will enable standard 8-16 gigahertz computers to run 100 times faster and will bring all optic devices closer to the terahertz chip.


Comments