Cover Story: WHEN FOOD COMES CALLING  |  Cover Story: Yours Online, Kudumbashree  |  Cover Story: DATE WITH THE DIGITAL  |  Rajagiri Round Table: IT'S E-S FOR SHOPPING  |  Technology Inceptions: Astrophysicists Count All the Starlight in the Universe  |  Leadership Instincts: China’s female beauty paradigms changes themselves   |  Parent Interventions: Sleepless babies! Inactivity may be the culprit  |  Parent Interventions: How to teach kids to deal with money   |  Scholarships & Sponsorships: POST GRADUATE SCHOLARSHIP FOR SINGLE GIRL CHILD 2018-19  |  Technology Inceptions: Indian Robotics Company Emotix Launches Miko 2, a Companion for Children  |  Technology Inceptions: Samsung 860 QVO Affordable Multi-Terabyte Storage SSD Launched  |  Parent Interventions: Do not coerce your child for reluctant apology  |  Science Innovations: MIT engineers develop first-ever plane propelled by “ionic wind”  |  Parent Interventions: “Parentese” is good for infant’s language development  |  Technology Inceptions: First Gene-Edited Human Babies Claimed in China  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board

April 06, 2018 Friday 03:50:33 PM IST
The Terahertz Computer Chip is Now Around the Corner

Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. Two major challenges had thus far stood in the way of the terahertz microchip: overheating and scalability. 

Dr. Levy, head of HU’s Nano-Opto Group, and HU emeritus professor Joseph Shappir have now shown proof of concept for an optic technology that integrates the speed of optic (light) communications with the reliability and commercial scalability of electronics. Optic communications covers all technologies that use light and transmit through fibre optic cables, such as the internet, email, text messages, phone calls, and the cloud and data centres, among others.

Optic communications are exceptionally fast, but in microchips they become unreliable and difficult to replicate on a large scale. Now, by using a Metal-Oxide-Nitride-Oxide-Silicon (MONOS) structure, Levy and his team have designed a new integrated circuit that uses flash memory technology in microchips. Should it work, this technology will enable standard 8-16 gigahertz computers to run 100 times faster and will bring all optic devices closer to the terahertz chip.

Comments