Teacher Insights: National Teachers Award 2018 Winners and How They Achieved it  |  Technology Inceptions: Researchers Develop Metamaterial Morphs That Can Take New Shapes  |  Teacher Insights: Brain stimulation modifies memory   |  Teacher Insights: Babies display empathy for victims  |  Parent Interventions: Way to Reduce Hallway Disruptions   |  Parent Interventions: Picture books to introduce politics   |  Science Innovations: New way to strengthen metals  |  Science Innovations: Clue to make green polymers  |  International Edu News: Scholarship for study in Thailand  |  International Edu News: UK Visa Plan for Top Researchers  |  National Edu News: MSDE awards for entrepreneurship   |  Technology Inceptions: Google Assistant gets new features  |  Technology Inceptions: Multiple rear cameras for iPad Pro   |  Health Monitor: Childhood EPILEPSY  |  Cover Story: Line of Loose Control  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board
  • Pallikkutam Publications

March 07, 2018 Wednesday 10:26:34 AM IST

THE REINVENTION OF THE INDUCTOR

Technology Inceptions

One of the most basic building blocks of modern technology, inductors are omnipresent: cellphones, laptops, radios, televisions, cars. But what is most surprising is that it is essentially the same today as in 1831 when it was first invented by English scientist Michael Faraday. The large size of inductors made based on Faraday’s design of course limits the capacity to build a miniaturised device that should help in fulling exploiting the potential of the Internet of Things, which, by 2020, hopes to connect people to some 50 billion objects. By 2025, this ambition is expected to have an estimated economic impact between $2.7-$6.2 trillion annually. A team at UC Santa Barbara, led by Kaustav Banerjee, a Professor at the Department of Electrical and Computer Engineering, has adopted a materials-based approach to reinventing this fundamental element of modern electronics. All inductors generate both magnetic and kinetic inductance, but in the regular metal conductors, kinetic inductance is too tiny to be noticeable. Unlike magnetic inductance, kinetic inductance is not dependent on the inductor’s surface area and in fact resists current fluctuations that alter the velocity of the electrons.

Comments