Parent Interventions: Navigating through the Pandemic  |  Health Monitor: Attention and Memory Deficits in People Who Experienced Mild Covid  |  Parent Interventions: How can we Revert Peanut Allergies in Children?  |  Teacher Insights: Play Based Learning has a Positive Impact on Child's Learning and Development  |  Health Monitor: Social Media Use Likely to Affect the Physical Health of a Person  |  Parent Interventions: How to Deal with Developmental Language Disorder in Children  |  Health Monitor: Lifestyle Interventions from Early Childhood Prevents Cardiovascular Diseases  |  Teacher Insights: Teacher Expectations Can Have Powerful Impact on Students Academic Achievement  |  Policy Indications: Make Sure the Digital Technology Works for Public Good  |  Teacher Insights: The Significance of Social Emotional Learning Curriculum in Schools  |  Health Monitor: Forgetting is a Form of Learning  |  Higher Studies: University of Manchester Invites Application for LLB and LLM Programmes   |  Health Monitor: Is There a Blue Spot Inside our Brain?  |  Parent Interventions: Babies born during the Pandemic Performs Lower during Developmental Screening  |  Policy Indications: Invest in Structural Steel R&D : Prof BS Murty  |  
December 23, 2021 Thursday 12:35:08 PM IST

The Organs of our Body changes its Size: A Mystery

The smallest fish in the world till date is the Paedocypris which measures only 7 millimeters in length. This is nothing compared to the 9 meters of the whale shark. The small fish have many of the same genes and the same anatomy with the shark, but the dorsal and caudal fins, gills, stomach and heart, are thousands of times smaller! How do organs and tissues of this small fish stop growing very quickly?

 A multidisciplinary team led by scientists from the University of Geneva (UNIGE), Switzerland, and the Max Planck Institute for the Physics of Complex Systems (MPIPKS), Germany, was able to answer this fundamental question by studying its physics and using mathematical equations. Cells of a developing tissue proliferate and organize themselves under the action of signaling molecules, the morphogens. The research was done among the fruit fly Drosophila. In Drosophila, the morphogen Decapentaplegic (DPP), diffuses from a localized source within the developing tissue and then forms decreasing concentration gradients  as it moves away from the source. The scientists collected all this data on DPP in cells belonging to tissues of different sizes in normal flies and in mutants that failed to scale. They found that it is these different individual transport steps that define the extent of the gradient. Thus, in a small tissue, the DPP molecule is mainly spread by diffusion in between cells. Its concentration therefore falls quite rapidly around its source because of degradation, yielding a narrow gradient. On the other hand, in larger tissues, DPP molecules that went inside cells are also highly recycled, making it possible to extend the gradient over a larger area.