Cover Story: WHEN FOOD COMES CALLING  |  Cover Story: Yours Online, Kudumbashree  |  Cover Story: DATE WITH THE DIGITAL  |  Rajagiri Round Table: IT'S E-S FOR SHOPPING  |  Technology Inceptions: Astrophysicists Count All the Starlight in the Universe  |  Leadership Instincts: China’s female beauty paradigms changes themselves   |  Parent Interventions: Sleepless babies! Inactivity may be the culprit  |  Parent Interventions: How to teach kids to deal with money   |  Scholarships & Sponsorships: POST GRADUATE SCHOLARSHIP FOR SINGLE GIRL CHILD 2018-19  |  Technology Inceptions: Indian Robotics Company Emotix Launches Miko 2, a Companion for Children  |  Technology Inceptions: Samsung 860 QVO Affordable Multi-Terabyte Storage SSD Launched  |  Parent Interventions: Do not coerce your child for reluctant apology  |  Science Innovations: MIT engineers develop first-ever plane propelled by “ionic wind”  |  Parent Interventions: “Parentese” is good for infant’s language development  |  Technology Inceptions: First Gene-Edited Human Babies Claimed in China  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board

April 05, 2018 Thursday 10:17:38 AM IST
The Milky Way's Center may have Tens of Thousands of Black Holes!

A team of astrophysicists from Columia university has discovered a dozen of black holes gathered around Sagittarius A* (Sgr A*). Sagittarius A* is the supermassive black hole, situates exactly at the center of the Milky Way Galaxy. This new finding supports the decades-old prediction that there could be tens of thousands of black holes at the center of the Milky Way.

"Everything you'd ever want to learn about the way big black holes interact with little black holes, you can learn by studying this distribution," said Columbia Astrophysicist Chuck Hailey, co-director of the Columbia Astrophysics Lab and lead author on the study. "The Milky Way is really the only galaxy we have where we can study how supermassive black holes interact with little ones because we simply can't see their interactions in other galaxies. In a sense, this is the only laboratory we have to study this phenomenon."

The study was published in the first week of April.

For more than two decades, researchers have searched unsuccessfully for evidence to support a theory that thousands of black holes surround supermassive black holes at the center of large galaxies. This new discovery is the first of its kind to support this hypothesis.

In the past, failed attempts to find evidence of such a cusp have focused on looking for the bright burst of X-ray glow that sometimes occurs in black hole binaries

"It's an obvious way to want to look for black holes," Hailey said, "but the Galactic Center is so far away from Earth that those bursts are only strong and bright enough to see about once every 100 to 1,000 years." To detect black hole binaries then, Hailey and his colleagues realized they would need to look for the fainter, but steadier X-rays emitted when the binaries are in an inactive state.

"It would be so easy if black hole binaries routinely gave off big bursts like neutron star binaries do, but they don't, so we had to come up with another way to look for them," Hailey said. "Isolated, unmated black holes are just black -- they don't do anything. So looking for isolated black holes is not a smart way to find them either. But when black holes mate with a low mass star, the marriage emits X-ray bursts that are weaker, but consistent and detectable. If we could find black holes that are coupled with low mass stars and we know what fraction of black holes will mate with low mass stars, we could scientifically infer the population of isolated black holes out there."

Hailey and colleagues turned to archival data from the Chandra X-ray Observatory to test their technique. They searched for X-ray signatures of black hole-low mass binaries in their inactive state and were able to find 12 within three light years, of Sgr A*. The researchers then analyzed the properties and spatial distribution of the identified binary systems and extrapolated from their observations that there must be anywhere from 300 to 500 black hole-low mass binaries and about 10,000 isolated black holes in the area surrounding Sgr A*.

"This finding confirms a major theory and the implications are many," Hailey said. "It is going to significantly advance gravitational wave research because knowing the number of black holes in the center of a typical galaxy can help in better predicting how many gravitational wave events may be associated with them. All the information astrophysicists need is at the center of the galaxy."

(Source: Science Daily)

Comments