Teacher Insights: Teacher Expectations Can Have Powerful Impact on Students Academic Achievement  |  Policy Indications: Make Sure the Digital Technology Works for Public Good  |  Teacher Insights: The Significance of Social Emotional Learning Curriculum in Schools  |  Health Monitor: Forgetting is a Form of Learning  |  Higher Studies: University of Manchester Invites Application for LLB and LLM Programmes   |  Health Monitor: Is There a Blue Spot Inside our Brain?  |  Parent Interventions: Babies born during the Pandemic Performs Lower during Developmental Screening  |  Policy Indications: Invest in Structural Steel R&D : Prof BS Murty  |  Management lessons: ONPASSIVE Technologies Shows the Way in Rewarding Outperformers  |  Parent Interventions: Can We Make Our Kids Smarter?  |  Health Monitor: More Sleep Means Better Quality of Life  |  Parent Interventions: New Year Resolution for Parents  |  Health Monitor: Health benefits of Choline in Kids  |  Health Monitor: It is never too late to Learn  |  Best Practices: IIT Hyderabad Improves ARIIA Ranking to 7  |  
March 20, 2020 Friday 02:03:13 PM IST

The force of cancer

Science Innovations

International research led by the University of St Andrews reveals the first direct measurement of the force cancer cells can apply when they invade, giving insights that may lead to possible future cancer treatments. The research, in collaboration with the Albert Einstein College of Medicine in New York also finds that the force that cancer exerts is linked to its ability to attack and degrade healthy tissue in the human body.

Many cancers form invadopodia, tiny protrusions about a thousandth of a millimetre in size, that promote invasion of healthy tissue by releasing enzymes which digest the surrounding tissue. Although it has been hypothesised that invadopodia exert mechanical force that is implicated in cancer invasion, direct measurements remained elusive. The research, led by Professor Malte Gather from the School of Physics and Astronomy at the University of St Andrews, used cells that form a model for head and neck cancer and an artificial replica of healthy tissue to study the force that cancer cells apply as they invade. Head and neck squamous carcinoma is a cancer found in the mucous membranes of the mouth, nose and throat.

The international team of scientists utilised a recently developed interferometric force imaging technique that provides pico-Newton resolution to quantify invadopodial forces in cells and monitor their temporal dynamics.

The research team compared the force exerted by individual protrusions to their ability to degrade extra cellular matrix, a main component of healthy tissue. They also investigated the mechanical effects of inhibiting invadopodia through genetic modification of the cancer cells.


By connecting the biophysical and biochemical characteristics of invadopodia, the study provides a new perspective on cancer invasion which in the future may help to identify biomechanical targets for cancer therapy.


(Content and Image Courtesy: https://news.st-andrews.ac.uk/archive/the-force-of-cancer)



Comments