Teacher Insights: Know about how to choose the best MPPSC coaching institute  |  National Edu News: Swinburne University of Technology & IIT H launch the joint doctoral program  |  Policy Indications: India & Japan collaborations for innovations on Hydrogen based technologies  |  National Edu News: Education Minister addresses at the Annual Convocation of IIM Rohtak  |  Education Information: UPSC postpones tests and Interviews of some examinations  |  National Edu News: Piyush Goyal launches the Startup India Seed Fund Scheme  |  Teacher Insights: Are you Proficient in English?  |  National Edu News: National climate vulnerability assessment sees 8 states as highly vulnerable  |  National Edu News: Education minister e-launches long-lasting hygiene product DuroKea Series  |  National Edu News: Punjab’s new nutrient rich crop varieties can satisfy India's nutritional needs   |  Guest Column: Delicious Dhabas  |  International Edu News: 2D Perovskites for Solar Cells and LEDS  |  International Edu News: AI Model for Predicting Tsunami  |  International Edu News: Wearable Sweat Sensors on a Bandage  |  International Edu News: Smallest High Resolution Microscope  |  
March 20, 2020 Friday 02:03:13 PM IST

The force of cancer

Science Innovations

International research led by the University of St Andrews reveals the first direct measurement of the force cancer cells can apply when they invade, giving insights that may lead to possible future cancer treatments. The research, in collaboration with the Albert Einstein College of Medicine in New York also finds that the force that cancer exerts is linked to its ability to attack and degrade healthy tissue in the human body.

Many cancers form invadopodia, tiny protrusions about a thousandth of a millimetre in size, that promote invasion of healthy tissue by releasing enzymes which digest the surrounding tissue. Although it has been hypothesised that invadopodia exert mechanical force that is implicated in cancer invasion, direct measurements remained elusive. The research, led by Professor Malte Gather from the School of Physics and Astronomy at the University of St Andrews, used cells that form a model for head and neck cancer and an artificial replica of healthy tissue to study the force that cancer cells apply as they invade. Head and neck squamous carcinoma is a cancer found in the mucous membranes of the mouth, nose and throat.

The international team of scientists utilised a recently developed interferometric force imaging technique that provides pico-Newton resolution to quantify invadopodial forces in cells and monitor their temporal dynamics.

The research team compared the force exerted by individual protrusions to their ability to degrade extra cellular matrix, a main component of healthy tissue. They also investigated the mechanical effects of inhibiting invadopodia through genetic modification of the cancer cells.


By connecting the biophysical and biochemical characteristics of invadopodia, the study provides a new perspective on cancer invasion which in the future may help to identify biomechanical targets for cancer therapy.


(Content and Image Courtesy: https://news.st-andrews.ac.uk/archive/the-force-of-cancer)



Comments