Leadership Instincts: Disappearance of Women researchers in Authorship during Pandemic  |  Technology Inceptions: MIT developed a New Successor for Mini Cheetah Robot  |  Science Innovations: IISc team develops novel computational model to predict ‘change blindness’  |  Science Innovations: Immune System Responds Better to Vaccination in Morning Hours  |  Teacher Insights: Training in Childhood Education, New Pedagogy Enabled Innovation in Teaching  |  International Policy: UNESCO Prize for Girls’ and Women’s Education 2021  |  Leadership Instincts: UNESCO Prize for Girls’ and Women’s Education 2021  |  Health Monitor: Intensive therapy better for Cerebral Palsy  |  Parent Interventions: Intensive therapy better for Cerebral Palsy  |  Science Innovations: Intensive therapy better for Cerebral Palsy  |  International Edu News: TutorComp- a new platform for online tutoring in UAE.  |  Higher Studies: IIT Hyderabad Announces 3 New Industry-Oriented BTech Programmes  |  Leadership Instincts: Innovation Hub of IIT Hyderabad and ARAI sign MoU for India Specific AV Tech  |  International Edu News: Nobel Peace Prize Laureates of 20th Century  |  International Edu News: Nobel Peace Prize 2021 for Safeguarding Freedom of Expression  |  
July 24, 2018 Tuesday 04:11:00 PM IST

Sunflower-like materials invented

Science Innovations

We are often amazed by the property of sunflower to follow solarmovements, the property of heliotropism. This is explained by the presence of light sensitive hormonesin the sunflower plant, called auxins. Bathed in sunlight, auxins, which are again the growth hormones, migrate to the shadow region causing growth of the stem in the shaded region, bending sunflower in the opposite direction, i.e. towards sun.

Now, the researchers at Tufts University School of Engineering (USA) have developed materials that that move in response to light, just like a sunflower. Such magnetic elastomeric composites can flex, grip, release, or rotate when exposed to light. They get actuated in different manner due to incidence of light, could enable a wide range of products that perform simple to complex movements, from tiny engines and valves to solar arrays that bend toward the sunlight. The results arepublished in the Proceedings of the National Academy of Sciences.

This is due to the unique magnetic properties of these materials that depend on their temperature, which,in turn, depends on the incidence of light. Such materials shaped into films, sponges, and hydrogels, are induced by nearby permanent or electromagnets and can exhibit as bending, twisting, and expansion. Generally, magnetic elastomers like polydimethylsoloxane (PDMS) exhibit this property.

Researchers hope to achieve more complicated and fine-tuned movements, such as folding and unfolding, microfluidic valve switching, micro and nano-sized engines and more for these materials.


Comments