Management lessons: Causes and cures of poor megaproject performance  |  Education Information: Exeter launches Master in Public Health   |  Education Information: St Andrews Prize for the Environment 2020  |  Education Information: MRC visits interdisciplinary health research team at Leeds  |  Education Information: Fika and Birmingham University offer mental skills training to students  |  International Edu News: The Prince of Wales officially opens the NAIC  |  National Edu News: University of Manchester awards an Honorary doctorate to Ratan Tata  |  Leadership Instincts: Edinburgh awarded Employer Champion status  |  International Edu News: Dr Michael Spence AC appointed new UCL President & Provost  |  International Edu News: Pioneering crop monitoring for food security wins Newton Prize  |  Leadership Instincts: UCL-led centre to investigate challenges of net zero future  |  Education Information: Oxford students given access to employers’ green credentials  |  National Edu News: Cabinet approves Elevation of BISAG as BISAG(N)   |  Leadership Instincts: Conservation measures for animal culture, the learning of non-human species  |  National Edu News: Union Minister unveils India/Bharat 2020  |  
February 19, 2018 Monday 05:29:48 PM IST

Steel-strong wonder wood is made

Science Innovations

19th February, 2018: In a study published recently in the journal Nature, engineers of Maryland University, USA reports the discovery of a novel method processing of natural wood to make it at least 10 times stronger and tougher.

The Maryland engineers have developed a two-step process for the purpose. In the first step, the lignin and hemicellulose from the natural wood was partially removed by a boiling process in an aqueous mixture of NaOH and Na2SO3. It was then followed by hot-pressing, which lead to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres.

Hu, an associate professor of materials science and engineering, says: “This could be a competitor to steel or even titanium alloys, it is so strong and durable. It's also comparable to carbon fiber, but much less expensive." "This kind of wood could be used in cars, airplanes, buildings -- any application where steel is used," Hu added.

These results paves way for a new array of wood-based products, working on the basis of natural nanotechnology. There exists already an exciting array of nanocellulose related materials. They include:

  • super clear paper for replacing plastic;
  • photonic paper for improving solar cell efficiency by 30%;
  • a battery and a super-capacitor out of wood;
  • a battery from a leaf;
  • transparent wood for energy efficient buildings;
  • solar water desalination for drinking and specifically filtering out toxic dyes.

This obviously trigger a new wood-based revolution in new generation building and manufacturing materials.