Higher Studies: IELTS Mock Tests: Benefits and Characteristics  |  Teacher Insights: New Features in Moodle 4.0  |  Policy Indications: India-US Launch Climate Action and Finance Mobilisation Dialogue  |  Science Innovations: Stanford University Develops Algorithm to Predict Molecular Structures  |  Technology Inceptions: Oxygen Concentrator, Generation System Developed by Indian Institute of Science  |  Teacher Insights: Early Intervention in Children Good to Prevent Dyslexia  |  Parent Interventions: Cognitive Stimulation Lowers Dementia Risk  |  Parent Interventions: Elderly Cope Better with Pandemic  |  Policy Indications: Use of Copyrighted Works in Online Education  |  Parent Interventions: Maternal Voice Reduces Pain in Preemies  |  Teacher Insights: Eye Sight of Children Affected by Online Learning  |  Expert Counsel: Afghanistan: Top Trouble Spot  |  Best Practices: 'Money Box' Project Gets National Recognition  |  Best Practices: Craft World School Support in Fighting Pandemic  |  Cover Story: High Enrollments , Low Outcomes- Right to Quality Education in India  |  
October 30, 2019 Wednesday 10:26:22 AM IST

Signal blocks stem cell division in brain

Science Innovations

Scientists from University of Basel have investigated the activity of stem cells in the brain of mice and discovered a key mechanism that controls cell proliferation. According to the researchers, the gene regulator Id4 exerts control as to whether stem cells remain in a state of rest or enter cell division. The results were published in Cell Reports and may be relevant for treating neurodegenerative disease in human brains.

The stem cells that have been found to be behind this process are restricted to specialized regions in the brain, so-called niches, which provide key signals that regulate stem cell self-renewal and differentiation. With increasing age, however, the stem cells become increasingly inactive and divide less frequently. The study shows that the ‘Notch2’ signalling pathway controls the expression of a specific transcription regulator called Id4.

By manipulating the signalling pathway, the production of new nerve cells can be specifically stimulated.In this way, brain damage caused by degenerative and neuropsychiatric diseases could be repaired in the future.


Comments