Policy Indications: A webinar on National Education Policy for Holistic Development  |  Policy Indications: School Education Department's initiatives during COVID-19 pandemic  |  Policy Indications: 'Technology can be an enabler for India to position itself as a global leader'  |  Policy Indications: Apex Committee meeting provides suggestions for finalization of draft STIP 2020  |  Technology Inceptions: CSIR-CCMB’s Dry Swab direct RT-PCR method to detect Covid gets ICMR approval  |  National Edu News: CSIR–AMPR to highglight Traditional Artisans and Crafts Expo at IISF-2020  |  National Edu News: GITA, a catalyst for nurturing innovation & industrial R&D: Minister  |  Parent Interventions: Headaches and online learning  |  Parent Interventions: E-cigarettes can be a ‘gateway’ to conventional cigarette smoking for teens   |  Parent Interventions: Thanksgiving meals for diabetic children  |  Technology Inceptions: Smart Speaker Determines Optimal Timing to Talk​  |  Teacher Insights: Teaching information literacy  |  Education Information: MISTI Global Seed Funds open for proposals after Covid pivot  |  Policy Indications: ‘Spill-over’ effects that improve the wider education system  |  Parent Interventions: Cambridge Dictionary names 'quarantine’ Word of the Year 2020   |  
October 27, 2020 Tuesday 10:19:05 AM IST

Scientists uncover mystery behind decline of star formation rate

Science Innovations

For long, scientists have been intrigued by the decrease in the rate at which stars were formed in galaxies after it peaked about 8-10 billion years ago. They have now deciphered the mystery behind this decline in star formation activity by measuring the atomic hydrogen of the galaxies.

A team of astronomers from the National Centre for Radio Astrophysics (NCRA-TIFR), Pune, and the Raman Research Institute (RRI), Bangalore, an autonomous institute of the Department of Science & Technology (DST), Government of India has used the upgraded Giant Metre wave Radio Telescope (GMRT), operated by NCRA-TIFR, to measure the atomic hydrogen content of galaxies seen as they were 8 billion years ago. The research carried out by Aditya Chowdhury, Nissim Kanekar, and Jayaram Chengalur of NCRA-TIFR, and Shiv Sethi, and K. S. Dwarakanath of RRI and published in the journal Nature records the earliest epoch in the universe for which atomic gas content of galaxies has been measured.  The research was funded by the Department of Atomic Energy, India, and DST, India.

The measurement of the atomic hydrogen mass of distant galaxies was done by using the upgraded GMRT to search for a spectral line in atomic hydrogen.
K. S. Dwarakanath of RRI, a co-author of the study, mentioned, “We had used the GMRT in 2016, before its upgrade, to carry out a similar study. However, the narrow bandwidth before the GMRT upgrade meant that we could cover only around 850 galaxies in our analysis, and hence were not sensitive enough to detect the signal.”

Detecting the 21 cm signal from the most distant galaxies in the universe was the main science goal of the GMRT when it was designed and built by a team led by Govind Swarup in the 1980s and 1990s. “Govind Swarup was very interested in this work and was following it keenly. Sadly, he passed away shortly before it was published. This work would not have been possible without him and the wonderful team that he put together to first build and then upgrade the GMRT”, said Nissim Kanekar of NCRA- TIFR, a Swarna Jayanti Fellow of DST and co-author of the study.

Technical explanation of GMRT upgradation


Unlike stars, which emit light strongly at optical wavelengths, the atomic hydrogen signal lies in the radio wavelengths, at a wavelength of 21 cm, and can only be detected with radio telescopes. Unfortunately, this 21 cm signal is very weak and difficult to detect from distant individual galaxies even with powerful telescopes like the upgraded GMRT. To overcome this limitation, the team used a technique called “stacking” to combine the 21 cm signals of nearly 8,000 galaxies that had earlier been identified with optical telescopes. This method measures the average gas content of these galaxies.


Comments