Parent Interventions: Take a Deep Breath! Treating Anxiety in Kids  |  Policy Indications: Parenting Programmes to Prevent Abuse and Neglect in Children  |  Technology Inceptions: Entangled Relations can be now Understood by Artificial Intelligence!  |  Science Innovations: Exposure to Deep Red Light improves Eyesight  |  Health Monitor: Another Mutated Variant of Covid-19 is on its Way!  |  Policy Indications: Survey Finds that Digital Workspace becomes Top Tech Priority in Education  |  Technology Inceptions: Strong Soft Materials are on the Move!  |  Rajagiri Round Table: Learning Through Games-Art and Science of Serious Games  |  Science Innovations: How Nucleoli Exist as Stable Droplets within the Nucleus?  |  Career News: Indian School of Business Inviting application for Aspiring Entrepreneurs  |  Health Monitor: Early Diagnosis and Treatment of Autism Spectrum Disorder Effective  |  Health Monitor: “School Meal Coalition” an Initiative by the UN  |  Policy Indications: WHO’s #HealthyAtHome Challenge for Students  |  Science Innovations: Another Planet Discovery!  |  Higher Studies: Hebrew University of Jerusalem's International Med-Tech Innovation MBA  |  
April 16, 2020 Thursday 09:02:52 PM IST

Scientists make step towards understanding the universe

International Edu News

Physicists from the University of Sheffield have taken a step towards understanding why the universe is made of mostly matter and not antimatter, by studying the difference between the two. Findings from the T2K experiment, a large international collaboration of more than 350 scientists including a team from Sheffield, indicate a difference between the fundamental behaviour of elusive elementary particles, neutrinos, and of antineutrinos - their antimatter counterparts. The research, published in Nature, is a major step forward in the study of the difference between matter and antimatter and could help to further our understanding of why the universe is mostly made up of matter and not equal parts of matter and antimatter.

The T2K Collaboration used the SuperKamiokande detector to observe neutrinos and antineutrinos which were generated 295km away at the Japanese Proton Accelerator Research Complex (J-PARC). As they travel through the Earth, these particles oscillate between different physical properties known as flavours. The T2K collaboration found a mismatch in the way neutrinos and antineutrinos oscillate by recording the numbers that reached SuperKamiokande with a flavour different from the one they had been created with.

The observation of the difference in behaviour between neutrinos and antineutrinos is due to a so-called asymmetry in their physical properties. Measuring this asymmetry, known as charge-conjugation and parity reversal (CP) violation, may help us understand the origin of the current prevalence of matter over antimatter in the Universe.

The measurements found during the experiment strengthen previous observations and pave the way towards future discoveries. A new generation of experiments under construction, involving a team of particle physicists at Sheffield, might provide an answer to the problem of the missing antimatter in the next 10 years.

(Content Courtesy: The University of Sheffield)