Health Monitor: Care for your Gut  |  Education Information: CBSE cancels class 10 Board Exams, postpones Class 12th Board Exams  |  Policy Indications: Dr Harsh Vardhan announces launch of `Aahaar Kranti’  |  Teacher Insights: X or Y? Learning is Beyond Getting the Equations Right!  |  Policy Indications: Atal Innovation Mission collaborates with Bayer  |  Parent Interventions: NITI Aayog Launches‘Poshan Gyan’, a Digital Repository on Nutrition Information  |  Education Information: EdCIL pays a highest ever dividend of Rs 12.5 Crore for the year 2019-20  |  National Edu News: Fitness Challenge for the Nation - 70th RRT Conference Intl. on 16th April  |  Parent Interventions: Reading for Fun Improves Language Skills  |  Technology Inceptions: Xiaomi Redmi Note 10 Pro  |  Technology Inceptions: Canon New image Runner Advance Dx  |  Technology Inceptions: Boat Bar 4000 DA  |  Teacher Insights: Digital Tool to Detect Fake News  |  Science Innovations: HGCO19: starting the enrolment for the PhaseI/II human clinical trials  |  National Edu News: Scientists discover the farthest Gamma-ray emitting active galaxy   |  
April 16, 2020 Thursday 09:02:52 PM IST

Scientists make step towards understanding the universe

International Edu News

Physicists from the University of Sheffield have taken a step towards understanding why the universe is made of mostly matter and not antimatter, by studying the difference between the two. Findings from the T2K experiment, a large international collaboration of more than 350 scientists including a team from Sheffield, indicate a difference between the fundamental behaviour of elusive elementary particles, neutrinos, and of antineutrinos - their antimatter counterparts. The research, published in Nature, is a major step forward in the study of the difference between matter and antimatter and could help to further our understanding of why the universe is mostly made up of matter and not equal parts of matter and antimatter.

The T2K Collaboration used the SuperKamiokande detector to observe neutrinos and antineutrinos which were generated 295km away at the Japanese Proton Accelerator Research Complex (J-PARC). As they travel through the Earth, these particles oscillate between different physical properties known as flavours. The T2K collaboration found a mismatch in the way neutrinos and antineutrinos oscillate by recording the numbers that reached SuperKamiokande with a flavour different from the one they had been created with.

The observation of the difference in behaviour between neutrinos and antineutrinos is due to a so-called asymmetry in their physical properties. Measuring this asymmetry, known as charge-conjugation and parity reversal (CP) violation, may help us understand the origin of the current prevalence of matter over antimatter in the Universe.

The measurements found during the experiment strengthen previous observations and pave the way towards future discoveries. A new generation of experiments under construction, involving a team of particle physicists at Sheffield, might provide an answer to the problem of the missing antimatter in the next 10 years.




(Content Courtesy: The University of Sheffield) 


Comments