Policy Indications: How Materials Science Helps Contain Contain Covid-19 Spread  |  National Edu News: IIT Hyderabad and PharmCADD signed a pact for the co-development of new drugs   |  Teacher Insights: Be Game  |  Health Monitor: Understanding ‘Haemorrhage'  |  National Edu News: Pallikkutam GlobalConnect#3 on 'Innovative Tools for Effective Teaching'  |  Expert Counsel: The Nine Dash Line  |  National Edu News: Astronomers Find One Group of Appearing and Disappearing Stars  |  Teacher Insights: Bird Book for Children to Love Nature  |  International Edu News: New Model to Fight Social Media Deep Fakes  |  Teacher Insights: Universal Lunch Makes Students Healthier  |  Teacher Insights: Physical Activity Boosts Self Regulation  |  Parent Interventions: Anti-Inflammatory Foods Reduce Blood Fats  |  Parent Interventions: New Technique to Treat ADHD  |  Parent Interventions: Reduce Lab Tests in NICU Patients  |  Parent Interventions: Switch Off  |  
March 16, 2021 Tuesday 03:58:00 PM IST

Scientists develop molecular sensor toidentify new drugs of therapeutic value

National Edu News

Researchers have recently developed a molecular sensor, which can identify cancer drugs by detecting how such chemicals modify microtubules inside living cells. Microtubules are part of the cytoskeleton, a structural network within the cell's cytoplasm, and they alter in response to several chemicals.

Understanding tubulin modifications has remained a challenge till date because of unavailability of tools that can mark them in living cells. Researchers from inStem, Bangalore, India, in collaboration with Curie Institute, Orsay, France, funded by Indo-French Centre for the Promotion of Advanced Research (IFCPAR/CEFIPRA), a bilateral organization supported by Department of Science & Technology (DST), Government of India and Government of France decided to overcome this shortcoming and developed the first tubulin nanobody - or sensor to study the dynamics of microtubule modifications in living cells and use this for identification of new cancer therapeutic drugs. This work has been recently published recently in the Journal of Cell Biology.

The researchers from Bangalore and Orsay devised a method to design synthetic proteins, known as nanobodies, which can bind specifically to modified microtubules. These nanobodies are similar to antibodies made in our body as a defense mechanism against pathogens. However, unlike antibodies, the nanobodies are smaller in size and easily amenable for protein engineering. The nanobody was then coupled with a fluorescent molecule to serve as a detection tool, called sensor. They developed and validated a live cell sensor against a unique microtubule modification called tyrosinated form of microtubules that is already known to be important for cell division and intracellular organization.

The tyrosination sensor is the first tubulin nanobody - or sensor - that can be used to study the dynamics of microtubule modifications in living cells. CEFIPRA researchers have shown the application of this sensor in studying the effect of small-molecule compounds that target microtubules. These chemicals are frequently used as anti-cancer drugs. Thus, the tyrosination sensor will facilitate studying microtubule functions for many researchers and will aid identifying new drugs of therapeutic value.