National Edu News: CBSE Awards for Teaching and School Leadership 2020-21, Apply till June 28th  |  Technology Inceptions: Microsoft Surface Laptop 4 for Commercial and Education Purposes  |  Technology Inceptions: 'Sunwatch' to Detect Harmful UV Rays  |  Science Innovations: High Power Laster to Deflect Lightning  |  Parent Interventions: A Guide to Parenting in Times of Pandemic  |  Guest Column: The Death of the Creative Writer!  |  Teacher Insights: Why the Boom in Private Tuition Business?  |  Technology Inceptions: More Heat Resilient Silver Circuitry  |  Science Innovations: Silica Nanoparticles for Precise Drug Targetting  |  National Edu News: IIT Hyderabad Improves in QS World University Rankings to 591-600  |  Technology Inceptions: C02 Emissions to Be Made into Animal Feed  |  Leadership Instincts: Blockchain Helping UN Interventions to End Poverty and Hunger  |  National Edu News: Three Indian Institutions in Top 200 of QS World University Rankings  |  Management lessons: Vaccines, Social Distancing, Facemasks Essential Tools to Fight Covid-19  |  Education Information: “The Language Network” to revolutionise language learning  |  
May 19, 2021 Wednesday 12:52:03 PM IST

Scientists develop magnetometer for low cost, reliable & real-time measurements

Technology Inceptions

Researchers have demonstrated a low-cost digital system to efficiently measure unknown magnetic fields. Digital signals are the backbone of communication systems processed by hardware systems that transmit and receive the signals with the help of intermediate systems called ‘digital receiver systems’ or DRS. When magnetic matter creates signals, analysing them with DRS lets scientists study the magnetic fields. Analysing the properties of the signals, for example, how they vary with time, scientists can measure the fields and study their small fluctuations. In a new study, scientists from Raman Research Institute (RRI), Bengaluru, an autonomous institute of the Department of Science & Technology, Government of India, have devised a more efficient, faster, and low-cost digital receiver system that can make precise measurements of magnetic fields. The study was supported by the Department of Science and Technology and the Ministry of Electronics and Information Technology (MeitY) Government of India. It was published in the journal IEEE Transactions on Instrumentation and Measurement. The system costs less than 350$ for all the silicon-based hardware and associated software. The hardware of digital receiver systems are built with standard silicon-based memory devices. Computer codes are implemented that make these devices perform mathematical operations on the signal they receive, enabling DRS systems to measure fundamental properties of matter like ‘Spin’. The spin of electrons determines the magnetism of most of the objects around us.

The work is an extension of the Ph.D. thesis work of the co-authors Maheswar Swar and Subhajit Bhar of RRI. The researchers heated rubidium atoms to temperatures ranging between 100 and 200 degrees Celsius, causing spin fluctuations. Then, they bombarded the atoms with a laser, which has a property called ‘polarization’. The spin fluctuations caused the laser’s polarization to fluctuate, which the researchers measured using a light detector. The polarization fluctuation is the signal for the digital receiver system. They then designed the system to work in two different modes. One of them uses a widely-used mathematical function, the ‘Fourier transform’ of the signal, named after its inventor Joseph Fourier. The Fourier transform of the signal lets them calculate how the rubidium atom’s energies vary, from which they can directly infer the magnetic field. A standard method of measuring the magnetic field analyses small frequency ranges of the signal separately. The researchers showed that their method speeds up the calculations compared to the standard method. Their improved method also increased their confidence in how the electrons’ energies vary more than ten times. Sometimes, while measuring magnetic fields, the DRS may receive signals only for a short time. In such scenarios, it is essential to record the signal as it gets created without losing any part of it. The researchers successfully implemented this ability with the help of a combination of standard hardware and computer codes. They measured a magnetic field of 800 microgauss –– roughly a thousand times smaller than the Earth’s magnetic field, within a tenth of a second. There was, however, a problem –– electromagnetic interference to the signal the DRS receives. “The source is the power supply to the digital receiver, and radio-frequency signals emanating from other nearby electronic devices, such as the computers, phones, lasers, and other laboratory instruments,” explains V. Mugundhan, another co-author of the study. They got rid of these sources by using a battery bank to power the DRS’s hardware components and shielded them entirely from interference using a 5-millimeter thick layer of mild steel. “We have also developed high-end data processing algorithms to remove the residual interference,” he adds.

The researchers applied an external magnetic field across the heated rubidium atoms. They demonstrated that their measurement of the magnetic field was consistent with what they expected. Thus, they demonstrated that their two-component digital receiver system works as an atomic magnetometer. “Our magnetometer can be deployed to measure unknown magnetic fields,” says Saptarishi.

Having demonstrated the functioning of a digital receiver system to precisely measure atomic magnetic fields, the researchers are open to large-scale manufacturing or commercialisation of the device. Such a step would require partners in the industry to show interest in the project. “There are no bottlenecks in manufacturing our device on large scales,” Saptarishi pointed out.

Comments