Policy Indications: India’s Impending Growth in Education and Skills Market: A Report  |  Technology Inceptions: Strong Soft Materials are on the Move!  |  Rajagiri Round Table: Learning Through Games-Art and Science of Serious Games  |  Science Innovations: How Nucleoli Exist as Stable Droplets within the Nucleus?  |  Career News: Indian School of Business Inviting application for Aspiring Entrepreneurs  |  Health Monitor: Early Diagnosis and Treatment of Autism Spectrum Disorder Effective  |  Health Monitor: “School Meal Coalition” an Initiative by the UN  |  Policy Indications: WHO’s #HealthyAtHome Challenge for Students  |  Science Innovations: Another Planet Discovery!  |  Higher Studies: Hebrew University of Jerusalem's International Med-Tech Innovation MBA  |  Higher Studies: University of Birmingham Dubai invites applications for M.Sc. Urban Planning  |  Leadership Instincts: UNICEF’s comprehensive statistical analysis finds that nearly 240 million childr  |  Technology Inceptions: Quantum Dots can be Improvised in Tracking Biochemical Pathways of a Drug  |  Technology Inceptions: MIT promotes ‘Back to Bicycles’ with Artificial Intelligence  |  Policy Indications: Cambridge’s New Curriculum matches NEP 2020  |  
October 28, 2019 Monday 11:18:40 AM IST

Rutgers University Develops 'Chemistry of Art' Course

Photo of Gita Govindarajoo by Rutgers University

Rutgers University has developed a 'Chemistry of Art' course that helps explore how science and art are fused together.The course was developed by Geeta Govindarajoo, a professor in the Department of Chemistry and Chemical Biology. She was inspired by the autobiography of New Jersey native Ken Perenyi, who is considered one of America's most successful art forgers. His book, Caveat Emptor: The Secret Life of an American Art Forger, explores how he became a prolific con-artist through his knowledge and use of chemistry.
A forgery in painting can be detected by examining the paints used. The artists of 16th or 18 th centuries may have used lead and other elements not found in paints today.
Another technique is the use of ultraviolet light that can detect antique varnish. "So, what Penrenyi did was he used Q-tips to clean off antique varnish from old paintings, mixed the varnish that he squeezed off of the Q-tips with new varnish and used it over his paintings. Thus, the forgeries became undetectable to investigators,” Govindarajoo said. “I was fascinated by the amount of chemistry involved, and rather than just talk about it, I would rather students watch the science in action.”
The Rutgers students placed different salt solutions containing methanol in separate bows and set them on fire. The colours of the flame became different depending on what chemical was used.
This change in color explains things like how light and energy interact with chemicals and cause these beautiful pink and purple colors,” Porcja said. Understanding how light and color work is an important element in both art and science.
Other demonstrations include mixing a soluble silver salt such as silver nitrate, treating it with ammonia and adding dextrose, which creates silver metal that sticks to glass and cracks, similar to patterns on holiday ornaments. Students will also learn about paper making, jewelry making and will get a chance to create photographs by using paper and chemicals that develop in sunlight in order to demonstrate how the first photographs were taken. 
The course will also take students out of the classroom to visit the Zimmerli Art Museum’s Dimensionism: Modern Art in the Age of Einstein exhibit, which explores how modern art was influenced by advances in science. This includes Einstein’s theory of relativity, which Govindarajoo said offers students a multidimensional way to explore the ways art and science inform each other.
“What’s fun about this course is sometimes we learn one new thing, and that sparks an entirely new conversation and we brainstorm demonstrations around it. Even though the syllabus is mapped out, I am open to going off course and exploring new demonstrations that students want to see,” Govindarajoo said, adding that she hopes to one day partner with Mason Gross visual arts students to collaborate on projects that unite chemistry and art. “I hope this course spreads the interconnectedness of art and science in ways that scientists, artists and everyone in between can appreciate.”

Source: Rutgers University