Education Information: Cardiff achieves ‘Champion’ status for gender equality in physics  |  Parent Interventions: Online survey to assess needs of children and young people with cancer   |  Parent Interventions: Study links severe childhood deprivation to difficulties in adulthood  |  Parent Interventions: New study aims to learn the lessons of homeschooling  |  Teacher Insights: Using e-learning to raise biosecurity awareness  |  National Edu News: Science and Technology in finding solutions to combat COVID-19  |  National Edu News: Ek Bharat Shreshtha Bharat programme  |  Health Monitor: Beware of Hepatitis D, It can Lead to Hepatocellular Carcinoma  |  Teacher Insights: Education project to understand Birmingham learning at home during COVID-19  |  Education Information: UoG launches new onlines to meet some of the challenges of Covid-19  |  Teacher Insights: Professor Woolfson awarded Humboldt Research Prize  |  Parent Interventions: Parents paying heavy price for lockdown  |  Teacher Insights: Great Science Share brings science investigations into homes  |  Education Information: App will reduce high risk of falls during and after Lockdown  |  Education Information: University of Manchester to decarbonise its investment portfolio  |  
September 13, 2019 Friday 01:13:25 PM IST

Researchers Develop Metamaterial Morphs That Can Take New Shapes

Caltech photo

Researchers at Caltech-Georgia Tech-ETH Zurich has developed a new metamaterial which can change shape according to how it is find tuned by the user. 
Julia Greer, the Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering at Caltech has created materials out of micro-and nonoscale building blocks that are arranged into sophisticated architectures that can be periodic, like a lattice or a non-periodic in a tailor-made fashion, giving them unsusual physical properties.
Most materials that are designed to change shape require a persistent external stimulus to change from one shape to another and stay that way: for example, they may be one shape when wet and a different shape when dry—like a sponge that swells as it absorbs water.
By contrast, the new nanomaterial deforms through an electrochemically driven silicon-lithium alloying reaction, meaning that it can be finely controlled to attain any “in-between” states, remain in these configurations even upon the removal of the stimulus, and be easily reversed. Apply a little current, and a resulting chemical reaction changes the shape by a controlled, small degree. Apply a lot of current, and the shape changes substantially. Remove the electrical control, and the configuration is retained—just like tying off a balloon. A description of the new type of material was published online by the journal Nature on September 11.

It has potential applications in next-generation energy storage and bio-implantable micro-devices.


More details in https://www.caltech.edu/about/news/new-metamaterial-morphs-new-shapes-taking-new-properties


Comments