Cover Story: Elimination Round or Aptitude Test- How to Align CUET with NEP 2020 Goals  |  Life Inspirations: Master of a Dog House  |  Education Information: Climate Predictions: Is it all a Piffle!  |  Leadership Instincts: Raj Mashruwala Establishes CfHE Vagbhata Chair in Medical Devices at IITH   |  Parent Interventions: What Books Children Must Read this Summer Vacation   |  Rajagiri Round Table: Is Time Ripe for Entrepreneurial Universities in India?  |  Life Inspirations: How to Overcome Fear of Public Speaking  |  Technology Inceptions: Smart IoT-based, indigenously-developed, ICU Ventilator “Jeevan Lite” Launched  |  Parent Interventions: Meditation Reduces Guilt Feeling  |  Teacher Insights: Music Relief for Study Stress  |  Teacher Insights: Guided Play Effective for Children  |  Teacher Insights: Doing Calculations Boosts Mental Strength  |  Best Practices: Hugging for Happiness  |  Parent Interventions: Is Frequent Childcare Outside of the Family Beneficial for a Child's Development  |  Technology Inceptions: How to Prevent the Toxic Effects of Tricloson used in Consumer Products?  |  
February 06, 2019 Wednesday 03:49:29 PM IST

Regulator for immune system

Science Innovations

A component has been identified by researchers in Umeå University, Sweden, as a novel regulator of the immune system. It acts as a molecular switch to deactivate the innate immune system and has the ability to prevent certain diseases caused by an excessive activation of the immune system. This is shown in a new doctoral thesis at the university.

Our innate immune system is activated when the body needs to protect itself against pathogenic organisms, such as bacteria and viruses, or heal injured tissue. In some people, the immune system overreacts, which can cause chronic inflammatory diseases and cancer.

Researchers identified MYSM1, a component of the ubiquitin (a small protein that is found in almost all cellular tissues) system, as a key regulator that stops excessive inflammation. They found that this molecule acts as a ‘rheostat’, which in response to innate immune stimuli, is turned in an ‘on and off’ manner to restore immune homeostasis (tendency towards a stable equilibrium).


Comments