Policy Indications: Madhya Pradesh Launches Startup Programme 2022  |  Cover Story: Elimination Round or Aptitude Test- How to Align CUET with NEP 2020 Goals  |  Art & Literature: Song of the Rain- Monsoon in Literature, Journalism and Films  |  Life Inspirations: Master of a Dog House  |  Education Information: Climate Predictions: Is it all a Piffle!  |  Best Practices: Project Manzil Inspires Young Girls to Seek Aspiring Careers  |  Leadership Instincts: Raj Mashruwala Establishes CfHE Vagbhata Chair in Medical Devices at IITH   |  Parent Interventions: 10 Tricks to Help You Prepare for This Year's IB Chemistry Test  |  National Edu News: TiHAN supports a Chair for Prof Srikanth Saripalli at IIT Hyderabad  |  Teacher Insights: How To Build Competitive Mindset in Children Without Stressing Them  |  Parent Interventions: What Books Children Must Read this Summer Vacation   |  Policy Indications: CUET Mandatory for Central Universities  |  Teacher Insights: Classroom Dialogue for a Better World  |  Rajagiri Round Table: Is Time Ripe for Entrepreneurial Universities in India?  |  Life Inspirations: How to Overcome Fear of Public Speaking  |  
December 20, 2021 Monday 01:50:49 PM IST

Quantum Physics can help in detecting SARS-COV-2 virus

The new approach is described in a paper published Thursday in the journal Nano Letters, by Changhao Li, an MIT doctoral student and his associates. Existing tests for the SARS-CoV-2 virus include rapid tests that detect specific viral proteins, and polymerase chain reaction (PCR) tests that take several hours to process. Neither of these tests can quantify the amount of virus present with high accuracy. Even the gold-standard PCR tests might have false-negative rates of more than 25 percent. In contrast to this, the research team’s analysis shows the new test could have false negative rates below 1 percent. The test could also be sensitive enough to detect just a few hundred strands of the viral RNA, within just a second.

The new method involves coating the nano-diamonds with a low cost material that is magnetically coupled to them and has been treated to bond only with the specific RNA sequence of the virus. When the virus RNA is present and bonds to this material, it disrupts the magnetic connection and causes changes in the diamond’s fluorescence that are easily detected with a laser-based optical sensor.

Comments