Technology Inceptions: NASA's Chandra X-ray Observatory back in action  |  Science Innovations: GenNext Solar Cells with Record-breaking efficiency invented  |  Science Innovations: Canadian researchers develop world’s fastest camera   |  Science Innovations: Scientists discover “ultra-stripped supernova”, the origin of gold and platinum   |  Parent Interventions: Why do bees stop buzzing during a total solar eclipse?   |  Parent Interventions: Lie detection is not an easy task  |  Teacher Insights: Can we learn while sleeping?  |  Teacher Insights: Sitting up straight boosts math performance  |  Science Innovations: Engineers design molecules that store thermal energy   |  Technology Inceptions: Russia May Bring Forward Manned Launch After Rocket Failure  |  Technology Inceptions: New Nokia Smartphone's India Launch Expected Today, how to Watch Live Stream  |  Science Innovations: Kahne Lab prepares to combat superbugs   |  Teacher Insights: False beliefs die hard  |  Science Innovations: New wayto convert metals to superconductors  |  Technology Inceptions: Willmott Dixon Trials 'Bionic' Vest  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board

September 22, 2018 Saturday 11:06:00 AM IST
Quantum Dots: Duo is better than singles

Researchers of Osaka University, Japan, developed a device that can track single electron events in a quantum dot in real time, which would be useful for the development of photonic devices and quantum computing.

Have you noticed the bright colours displayed on the background during stage shows, on advertisement boards, sign boards etc.? LEDs are mainly used for such bright displays that need huge amount of current for their operation. What if it is possible to display the full spectrum of colours with minimum usage of electricity. Quantum dots are doing just that.

Quantum dots are nanoparticles of semiconductor materials that display different colours when illuminated with light. They assemble all by themselves into different sizes during their formation and glow with a colour that depends on the size of the nanoparticle with which they are made up of. As they could be used for transferring quantum information, it is important to develop a way to measure the charge in a single self-assembled quantum dot.

Researchers at Osaka University, Japan have developed a device based on two self-assembled quantum dots of indium arsenide, in which one quantum dot can be used as a sensor to track the electron charge in the other quantum dot. The pair of quantum dots is found to perform much better than a single quantum dot in this regard.

According to the researchers, this device may find applications in improving the efficiency of solar cells and in quantum cryptography and quantum computing.

DOI: 10.1038/s41598-018-31268-x

Comments