International Edu News: What will education look like in future  |  Leadership Instincts: Advanced Leadership Initiative welcomes its most diverse group of fellows  |  International Edu News: Diet may influence risk of aggressive prostate cancer  |  Teacher Insights: Laurie Anderson to present Norton Lectures  |  Policy Indications: NEP 2020: Implementation Plan for School Education  |  National Edu News: Union Education Minister virtually interacts with KV students   |  Expert Counsel: The India Way  |  Science Innovations: DST Scientists find clue to anomalous behaviour of self-propelled fluctuations  |  Technology Inceptions: INSPIRE Faculty fellow’s engineering to produce heat-tolerant wheat varieties  |  National Edu News: Indians to soon have access to Chitra Flow Diverter stent  |  National Edu News: Sensitive Youth will Create New India: Smriti Zubin Irani  |  Education Information: Sports Ministry to name all upgraded sporting facilities after sportspersons  |  Finance: Elephant in the Room  |  Guest Column: Pandemic Effect on Education  |  Parent Interventions: Fast food restaurant proximity likely doesn't affect children's weight   |  
November 25, 2020 Wednesday 12:03:58 PM IST

Phiala Shanahan receives Kenneth G. Wilson Award

Leadership Instincts

Class of 1957 Career Development Assistant Professor of Physics Phiala Shanahan will receive the 2020 Kenneth G. Wilson Award for Excellence in Lattice Field Theory. The award, given by the international lattice field theory community, recognizes her research of hadrons and nuclei using the tools of lattice Quantum Chromodynamics, or lattice QCD, and her pioneering application of machine learning and artificial intelligence techniques to lattice field theory.

Shanahan’s research interests are focused around theoretical nuclear and particle physics, specifically regarding the structure and interactions of hadrons and nuclei from the fundamental (quark and gluon) degrees of freedom encoded in the Standard Model of particle physics. In recent work she has used supercomputers to reveal the role of gluons, the force carriers of the strong interactions described by QCD, in hadron and nuclear structure. She and her group recently also achieved the first calculation of the gluon structure of light nuclei, making predictions that will be testable in new experiments proposed at Jefferson National Accelerator Facility and at the planned Electron-Ion Collider.

(Content Courtesy: