International Edu News: Meet Gitanjali Rao, TIME's First-Ever Kid of The Year 2020  |  Cover Story: Lead us to the Right Test  |  Parent Interventions: Diagnosis and management of food allergies in children  |  Science Innovations: How Emotions Are Generated in Our Brain  |  Science Innovations: Primate Eye Functions Like a Digital Camera  |  Best Practices: IIT, NITs, Engineering Colleges to Adopt National Highway on Voluntary Basis  |  National Edu News: New Campus of National Institute of Naturopathy in Pune to be named 'Nisarg Gram  |  Best Practices: The Gender Voice Lab  |  International Edu News: Macquarie Launches MindSpot Academy for Digital Mental Health Services  |  Guest Column: Edtech Drives Innovation in School Education  |  Leadership Instincts: Peking University co-initiates Observatory of Higher Education Transformations   |  Technology Inceptions: New tool to check for data leakage from AI systems  |  Education Information: New partnership to create apps to learn social and emotional intelligence  |  Leadership Instincts: Peter Russell to lead SIGS Institute of Future Human Habitats  |  Policy Indications: A task force to impart technical education in Mother Tongue  |  
February 17, 2018 Saturday 04:15:56 PM IST

Pencil and paper convert heat to electricity

Science Innovations

17th February, 2018: Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Germany has come out with an inexpensive and environmentally friendly way of producing electricity from heat with the simplest of components: a normal pencil, photocopy paper, and conductive paint. The temperature difference produced between the media is converted into electricity via the thermoelectric effect.

Thermoelectric materials need to have low thermal conductivity despite their high electrical conductivity. This is seldom realizable, since ordinarily both thermal and electrical conductivity vary similarly.

The materials used today to develop thermoelectric devices include inorganic semiconductor materials such as bismuth telluride. But they are extremely expensive to produce and toxic. Some flexible, non-toxic, organic materials based on carbon nanostructures are also being investigated for use in the human body.

A team of scientists of HZB, under the leadership of Prof. Norbert Nickel have identified a simple mechanism for developing photoelectric effect. They developed two materials; one based on a normal HB-grade pencil, covered by ordinary photocopy paper and the other based on conductive co-polymer paint applied on to the surface of the paper. The new system produced electricity at par with the more expensive nanocomposites as used today, which could be increased tenfold by adding some indium selenide to the graphite from the pencil.


This invention helps us to print thermoelectric components onto paper that are extremely inexpensive, environmentally friendly, and non-toxic. These tiny and flexible components could also be used directly on the body and could use body heat to operate small devices or sensors.

Comments