Parent Interventions: Take a Deep Breath! Treating Anxiety in Kids  |  Policy Indications: Parenting Programmes to Prevent Abuse and Neglect in Children  |  Technology Inceptions: Entangled Relations can be now Understood by Artificial Intelligence!  |  Science Innovations: Exposure to Deep Red Light improves Eyesight  |  Health Monitor: Another Mutated Variant of Covid-19 is on its Way!  |  Policy Indications: Survey Finds that Digital Workspace becomes Top Tech Priority in Education  |  Technology Inceptions: Strong Soft Materials are on the Move!  |  Rajagiri Round Table: Learning Through Games-Art and Science of Serious Games  |  Science Innovations: How Nucleoli Exist as Stable Droplets within the Nucleus?  |  Career News: Indian School of Business Inviting application for Aspiring Entrepreneurs  |  Health Monitor: Early Diagnosis and Treatment of Autism Spectrum Disorder Effective  |  Health Monitor: “School Meal Coalition” an Initiative by the UN  |  Policy Indications: WHO’s #HealthyAtHome Challenge for Students  |  Science Innovations: Another Planet Discovery!  |  Higher Studies: Hebrew University of Jerusalem's International Med-Tech Innovation MBA  |  
April 09, 2021 Friday 02:30:03 PM IST

Particle’s ‘wobble’ hints at new physics

International Edu News

The “wobble”, or rate of precession, of the muon particle in a magnetic field is different from what our best theoretical model of the subatomic world would predict, according to an experiment involving UCL researchers that strengthens evidence for new, unknown physics. The Muon g-2 experiment, carried out at the Fermi National Accelerator Laboratory in the United States, measured with unprecedented precision the rate at which the muon “wobbled” (precessed) as it circulated a 15-metre magnetic ring at nearly the speed of light.

When placed in a magnetic field, the particle acts like a tiny magnetic compass and, like the axis of a spinning top, it precesses, or rotates, as its spins. This rotation was faster than is predicted by the Standard Model of particle physics. The muon is 200 times more massive than its cousin, the electron. It is unstable and decays in a few millionths of a second. As muons circulate in the Muon g-2 experiment, they interact with subatomic particles popping in and out of existence. Interactions with these short-lived particles cause the muons’ precession to speed up or slow down very slightly. A different rate of precession from what the Standard Model predicts suggests additional forces or particles that the model does not account for.

The international Muon g-2 experiment, involving dozens of labs and universities in seven countries including the UK, aimed to replicate a previous experiment at the US’s Brookhaven National Laboratory, whose results, published in 2006, suggested the muon’s behaviour deviated from the Standard Model. The latest measurement confirmed this result with more certainty. Combined with other developments including the LHCb result last week, it could herald a new era for physics.

Scientists in the UK, funded by the Science and Technology Facilities Council, played a vital role in the experiment, with teams at UCL building a key detector and developing software to analyse the data. Other UK institutions involved include the Universities of Manchester, Liverpool, Lancaster and the Cockcroft Accelerator Institute.