Teacher Insights: Teacher Expectations Can Have Powerful Impact on Students Academic Achievement  |  Policy Indications: Make Sure the Digital Technology Works for Public Good  |  Teacher Insights: The Significance of Social Emotional Learning Curriculum in Schools  |  Health Monitor: Forgetting is a Form of Learning  |  Higher Studies: University of Manchester Invites Application for LLB and LLM Programmes   |  Health Monitor: Is There a Blue Spot Inside our Brain?  |  Parent Interventions: Babies born during the Pandemic Performs Lower during Developmental Screening  |  Policy Indications: Invest in Structural Steel R&D : Prof BS Murty  |  Management lessons: ONPASSIVE Technologies Shows the Way in Rewarding Outperformers  |  Parent Interventions: Can We Make Our Kids Smarter?  |  Health Monitor: More Sleep Means Better Quality of Life  |  Parent Interventions: New Year Resolution for Parents  |  Health Monitor: Health benefits of Choline in Kids  |  Health Monitor: It is never too late to Learn  |  Best Practices: IIT Hyderabad Improves ARIIA Ranking to 7  |  
December 29, 2020 Tuesday 12:25:16 PM IST

NUS scientists develop computational tool to help design safer devices

Technology Inceptions

Scientists from the National University of Singapore’s School of Computing (NUS Computing) have developed a software tool that can simulate hacker attacks, and which provide an automated way to protect the design. This helps designers create more secure computer chips. The software works by simulating a physical hardware attack known as laser fault injection. To accomplish this on a real device, the cyber-criminal would first partially disassemble the hardware to gain access to its silicon chip without interrupting its operation. Then, they use a laser to generate a processor error. This throws the gates open, allowing them to extract data and security information. Previously, it was expensive to protect chips against this kind of attack because they had to be tested manually. If the chip fails the test, the design must start over.

The NUS software, called the Laser fault Attack Benchmark Suite or LABS, can now simulate attacks in a wide variety of situations and demonstrate how the chip reacts. All this can be done without having to manufacture a single chip. This helps chip designers figure out how to repel the attack, and even trick the attackers into thinking they have succeeded. With this software, chip manufacturers will be able to simulate any device, and results are available within minutes.

The NUS scientists, led by Assistant Professor Trevor E. Carlson and Professor Peh Li Shiuan, have made the software open source so researchers and the chip design community can use it, or help make it better.

This project was first presented at the 2020 International Conference on Computer-Aided Design on 3 November 2020. It is part of a research programme under the National Research Foundation and is supported by the Ministry of Education as well as leading industry partners. To improve the software, the NUS team is equipping it with the ability to counter new attacks and more specific mitigation techniques. They are also exploring to extend its application beyond laser attacks, such as to those caused by electromagnetic pulses and voltage spikes.

(Content Courtesy: https://news.nus.edu.sg/nus-scientists-develop-computational-tool-to-help-design-safer-devices/)

Comments