Technology Inceptions: New Device Detects Decline in RBC Volume Causing Blurred Vision in Alcoholics  |  National Edu News: GATI, CURIE, WISTEMM, Vigyan Jyoti for attracting Women to Science & Tech  |  Rajagiri Round Table: Roadmap to Excellence in Research and Innovation  |  Policy Indications: Should Climate Change Communications be Emotional?  |  Science Innovations: Scientists Understand the Logistics of Protein Movement in a Cell  |  Health Monitor: Eating Disorders Linked to Psychiatric Disorders and Risk of Obesity  |  Science Innovations: The Mystery of the Flying Volcanic Ash Particles Revealed  |  Policy Indications: UK Graduate route to open to international students on 1 July 2021  |  Leadership Instincts: VP appeals to students to connect their knowledge with social relevance  |  Leadership Instincts: Catherine Dulac receives Nomis Distinguished Scientist and Scholar Award  |  Leadership Instincts: Online school reviews reflect school demographics more than effectiveness  |  Leadership Instincts: Researchers virtually open and read sealed historic letters  |  Cover Story: At Vantage Point  |  Management lessons: Why Aluminium Cans are Great for Packaging of Beverages?  |  Parent Interventions: Motivation to Perform  |  
January 06, 2021 Wednesday 03:16:46 PM IST

Novel film that keeps us dry and cool

International Edu News

A team of researchers from NUS has created a novel film that is very effective in evaporating sweat from our skin to keep us cool and comfortable when we exercise, and the moisture harvested from human sweat can be used to power wearable electronic devices such as watches, fitness trackers, and more. The main components of the novel thin film are two hygroscopic chemicals – cobalt chloride and ethanolamine. Besides being extremely moisture-absorbent, this film can rapidly release water when exposed to sunlight, and it can be ‘regenerated’ and reused more than 100 times. To make full use of the absorbed sweat, the NUS team has also designed a wearable energy harvesting device comprising eight electrochemical cells (ECs), using the novel film as the electrolyte. Each EC can generate about 0.57 volts of electricity upon absorbing moisture. The overall energy harvested by the device is sufficient to power a light-emitting diode. This proof-of-concept demonstration illustrates the potential of battery-less wearables powered using human sweat. This technological breakthrough was reported in the September print issue of the scientific journal Nano Energy.

The NUS team packaged the film into breathable and waterproof polytetrafluoroethylene (PTFE) membranes, which are flexible and commonly used in clothing, and successfully demonstrated the application of the moisture-absorption film for underarm pads, shoe linings, and shoe insoles.

Comments