Policy Indications: India’s Impending Growth in Education and Skills Market: A Report  |  Technology Inceptions: Strong Soft Materials are on the Move!  |  Rajagiri Round Table: Learning Through Games-Art and Science of Serious Games  |  Science Innovations: How Nucleoli Exist as Stable Droplets within the Nucleus?  |  Career News: Indian School of Business Inviting application for Aspiring Entrepreneurs  |  Health Monitor: Early Diagnosis and Treatment of Autism Spectrum Disorder Effective  |  Health Monitor: “School Meal Coalition” an Initiative by the UN  |  Policy Indications: WHO’s #HealthyAtHome Challenge for Students  |  Science Innovations: Another Planet Discovery!  |  Higher Studies: Hebrew University of Jerusalem's International Med-Tech Innovation MBA  |  Higher Studies: University of Birmingham Dubai invites applications for M.Sc. Urban Planning  |  Leadership Instincts: UNICEF’s comprehensive statistical analysis finds that nearly 240 million childr  |  Technology Inceptions: Quantum Dots can be Improvised in Tracking Biochemical Pathways of a Drug  |  Technology Inceptions: MIT promotes ‘Back to Bicycles’ with Artificial Intelligence  |  Policy Indications: Cambridge’s New Curriculum matches NEP 2020  |  
November 01, 2019 Friday 02:01:21 PM IST

Northwestern University Researchers Develop Futuristic 3D Printer

Photo by mebner1 from Pixabay

Researchers at Northwestern University have created a futuristic 3D printer so big ad fast it can print an object the size of an adult human in just a few hours.The prototype of the new technology high-area rapid printing (HARP) has been developed and it is 13 feet tall with a 2.5 sq foot print bed and can print about a yard in an hour. 
“3D printing is conceptually powerful but has been limited practically,” said Northwestern’s Chad A. Mirkin, who led the product’s development. “If we could print fast without limitations on materials and size, we could revolutionize manufacturing. HARP is poised to do that.” Mirkin predicts that HARP will be available commercially in the next 18 months. HARP uses a new, patent-pending version of stereolithography, a type of 3D printing that converts liquid plastic into solid objects. HARP prints vertically and uses projected ultraviolet light to cure the liquid resins into hardened plastic. This process can print pieces that are hard, elastic or even ceramic. These continually printed parts are mechanically robust as opposed to the laminated structures common to other 3D-printing technologies. They can be used as parts for cars, airplanes, dentistry, orthotics, fashion and much more.
A major limiting factor for current 3D printers is heat. Every resin-based 3D printer generates a lot of heat when running at fast speeds — sometimes exceeding 180 degrees Celsius. Not only does this lead to dangerously hot surface temperatures, it also can cause printed parts to crack and deform. The faster it is, the more heat the printer generates. And if it’s big and fast, the heat is incredibly intense. 
This problem has convinced most 3D printing companies to remain small. “When these printers run at high speeds, a great deal of heat is generated from the polymerization of the resin,” Walker said. “They have no way to dissipate it.”


Comments