Parent Interventions: As a Studious Girl Destroyed Her Mobile Phone  |  Teacher Insights: Know about how to choose the best MPPSC coaching institute  |  National Edu News: Swinburne University of Technology & IIT H launch the joint doctoral program  |  Policy Indications: India & Japan collaborations for innovations on Hydrogen based technologies  |  National Edu News: Education Minister addresses at the Annual Convocation of IIM Rohtak  |  Education Information: UPSC postpones tests and Interviews of some examinations  |  National Edu News: Piyush Goyal launches the Startup India Seed Fund Scheme  |  Teacher Insights: Are you Proficient in English?  |  National Edu News: National climate vulnerability assessment sees 8 states as highly vulnerable  |  National Edu News: Education minister e-launches long-lasting hygiene product DuroKea Series  |  National Edu News: Punjab’s new nutrient rich crop varieties can satisfy India's nutritional needs   |  Guest Column: Delicious Dhabas  |  International Edu News: 2D Perovskites for Solar Cells and LEDS  |  International Edu News: AI Model for Predicting Tsunami  |  International Edu News: Wearable Sweat Sensors on a Bandage  |  
January 28, 2021 Thursday 02:20:39 PM IST

Non-invasive brain stimulation helps to ease tremors

International Edu News

A team involving UCL researchers have used electrical pulses to help suppress the tremors typically found in conditions such as Parkinson’s disease.  In a paper published in Nature Communications, the scientists report their new way of suppressing the brain waves underpinning tremors, without the need for invasive techniques.

Tremors, a common feature in a range of neurological conditions, can be severely disabling, causing involuntary shakes affecting the hands, head, legs, or other body parts. The movements are thought to be the result of rogue brain waves – or aberrant oscillations – in regions associated with motor functions. But their underlying cause is still largely unknown, making it difficult to treat symptoms with drugs.

In severe cases, brain surgery may be an option, but this is invasive, not widely available, and carries risks.

In a small study, the researchers developed a way of calculating and tracking the phase of these rogue brainwaves in real-time – showing the synchronised peaks and troughs of activity as they ripple through the brain.

They then used a non-invasive form of electrical stimulation to target the cerebellum – the region at the back the brain which coordinates movement.

They found that by synchronising the brain stimulation with specific phases of these aberrant oscillations, they were able to reduce tremors in people with Essential Tremor Syndrome (ETS), the most common neurological disorder to cause such tremors.

Eleven people with ETS were given the treatment by applying electrodes to the scalp, arranged to maximise the electric fields in the cerebellum. The electric fields were adjusted in real-time to maintain a fixed phase corresponding to the ongoing tremor movement, called ‘phase-locking’.

The team found the reduction of symptoms lasted during stimulation and for a short period afterward. The reduction in the tremor amplitude (or severity) was associated with a disruption of the regularity of the movement, meaning the more the brain stimulation made the tremor irregular, the more it reduced its amplitude.

The team hopes that this discovery will pave the way for possible long-term treatment of tremors and other symptoms in people with other brain conditions that involves aberrant synchronous oscillations.

The researchers developed a way of calculating and tracking the phase of these rogue brainwaves in real-time – showing the synchronised peaks and troughs of activity as they ripple through the brain.

Comments