Leadership Instincts: Our brain itself is a Quantum Computer Says New Research  |  Parent Interventions: Nice People May Make Worse Financial Decisions  |  Teacher Insights: Chocolate, the Right Food to Improve Your Brain Power  |  Leadership Instincts: Strong Bricks Can Be Made from Bio solids and Clay  |  Parent Interventions: Order of Birth in Family Has Influence on Intelligence  |  Cover Story: MIND THE NET  |  Technology Inceptions: Oppo’s 10X Lossless Hybrid Zoom Smartphone Camera Tech to Enter Mass Production   |  Technology Inceptions: AI Can Help Improve Understanding of Earth Science  |  Cover Story: THE CYBER BRAIN  |  Science Innovations: New treatment for osteoporosis   |  Technology Inceptions: SpaceX Protests NASA Launch Contract Award  |  Science Innovations: Cost-efficient catalysts  |  Technology Inceptions: NASA to Launch New Space Telescope in 2023 to Explore Origins of Universe  |  Leadership Instincts: Social Media Cannot Cause Depression  |  Parent Interventions: Maternal Grandmothers Can Raise Survival Rate of Grandchildren  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board

October 10, 2018 Wednesday 10:10:48 AM IST
New wayto convert metals to superconductors

Superconductors are materials which do not offer resistance to the electric current flowing through them. Thus electricity could be transported through superconductors without incurring any loss and thus they are of great attraction for engineering applications.

The superconductors so far discovered offer zero resistance at considerably low temperatures and metals are generally candidates for bad superconductors. When cooled metals generally develops competing states that works against the transition to the superconducting state.

However, ateam of Japanese scientists developed a new technique of cooling a metal so rapidly that it will not even a get achance to enter the competing state, where it fails to be superconductive. By rapid cooling a mixture of iridium and tellurium from 270C to -2690C, the team has achieved a transition from metallic state to superconducting state.

According to the research team, this discovery would not only solve the energy loss problems in electrical power transmission, but also would lay a foundation for the development of high-speed quantum computers.

DOI: 10.1126/sciadv.aau3489 

Comments