Parent Interventions: As a Studious Girl Destroyed Her Mobile Phone  |  Teacher Insights: Know about how to choose the best MPPSC coaching institute  |  National Edu News: Swinburne University of Technology & IIT H launch the joint doctoral program  |  Policy Indications: India & Japan collaborations for innovations on Hydrogen based technologies  |  National Edu News: Education Minister addresses at the Annual Convocation of IIM Rohtak  |  Education Information: UPSC postpones tests and Interviews of some examinations  |  National Edu News: Piyush Goyal launches the Startup India Seed Fund Scheme  |  Teacher Insights: Are you Proficient in English?  |  National Edu News: National climate vulnerability assessment sees 8 states as highly vulnerable  |  National Edu News: Education minister e-launches long-lasting hygiene product DuroKea Series  |  National Edu News: Punjab’s new nutrient rich crop varieties can satisfy India's nutritional needs   |  Guest Column: Delicious Dhabas  |  International Edu News: 2D Perovskites for Solar Cells and LEDS  |  International Edu News: AI Model for Predicting Tsunami  |  International Edu News: Wearable Sweat Sensors on a Bandage  |  
April 26, 2019 Friday 11:03:35 AM IST

New tech for infrared cameras

Science Innovations

There's an entire world our eyes miss, hidden in the ranges of light wavelengths that human eyes can't see. But infrared cameras can pick up the secret light emitted as plants photosynthesize, as cool stars burn and batteries get hot. They can see through smoke and fog and plastic.

But infrared cameras are much more expensive than visible-light ones. A new breakthrough by scientists with the University of Chicago, however, may one day lead to much more cost-effective infrared cameras - which in turn could enable infrared cameras for common consumer electronics like phones, as well as sensors to help automatic cars see their surroundings more accurately.

Collecting multiple wavelengths within the infrared gives you more spectral information - it's like adding colour to black-and-white TV.  They tweaked the quantum dots so that they had a formula to detect short-wave infrared and one for mid-wave infrared. Then they laid both together on top of a silicon wafer. The resulting camera performs extremely well and is much easier to produce.


Comments