Leadership Instincts: IIT Hyderabad -ICAT MoU for Collaboration in Autonomous Navigation  |  Education Information: IIT Hyderabad Retains Top 10 Rank in QS Rankings in India  |  Cover Story: Elimination Round or Aptitude Test- How to Align CUET with NEP 2020 Goals  |  Life Inspirations: Master of a Dog House  |  Education Information: Climate Predictions: Is it all a Piffle!  |  Leadership Instincts: Raj Mashruwala Establishes CfHE Vagbhata Chair in Medical Devices at IITH   |  Parent Interventions: 10 Tricks to Help You Prepare for This Year's IB Chemistry Test  |  National Edu News: TiHAN supports a Chair for Prof Srikanth Saripalli at IIT Hyderabad  |  Teacher Insights: How To Build Competitive Mindset in Children Without Stressing Them  |  Parent Interventions: What Books Children Must Read this Summer Vacation   |  Policy Indications: CUET Mandatory for Central Universities  |  Teacher Insights: Classroom Dialogue for a Better World  |  Rajagiri Round Table: Is Time Ripe for Entrepreneurial Universities in India?  |  Life Inspirations: How to Overcome Fear of Public Speaking  |  Parent Interventions: Wide Ranging Problems of Preterm Infants  |  
November 26, 2019 Tuesday 10:11:22 AM IST

New light on molecular attraction

Science Innovations

Whether a surface is hydrophobic or hydrophilic is determined by the degree of molecular attraction between the substrate and the liquid.

Controlling the attraction is key to the wettability of substrates, which determines how many physical and biological systems function. For instance, plant leaves are often hydrophobic, allowing them to remain dry during rain so that gas exchange can occur through their pores. However, liquids such as paints, inks and lubricants are required to spread out to coat or 'wet' surfaces.

Researchers at University of Bristol from the School of Physics applied a number of theoretical and simulation techniques and discovered rich and unexpected behaviour such as divergent density fluctuations associated with the phenomenon of 'critical drying' at a superhydrophobic substrate.


They provide a firm conceptual framework for tailoring the properties of new materials, including finding super-repellant substrates, such as expelling water from windscreens. Their findings are published in the Proceedings of the National Academy of Sciences (PNAS).

Comments