National Edu News: 71st RRT Conference International on Appropriate Pedagogy of the Digital Natives  |  Guest Column: Collaboration + Research = Global Solutions   |  Teacher Insights: How Digital Technology Helps in Growth and Access to Quality Education  |  Management lessons: How Brands Use CARE to Stay on Top in Instagram  |  Hobbies &Trends: At Full Throttle  |  Finance: Bitcoin Mobile Apps Vulnerable to Security Threats: Guan-Hua Tu, MSU  |  International Edu News: Use plants' ability to tell the time to make food production more sustainable  |  International Edu News: Scientists develop new class of cancer drug with potential to treat leukaemia  |  International Edu News: Loan applications processed around midday more likely to be rejected  |  International Edu News: Researchers find climate change impacts plankton – a key marine food source  |  International Edu News: Nature must be a partner, not just a provider of services – Oxford report  |  National Edu News: Approval to MoU between India and UK on Global Innovation Partnership  |  National Edu News: Transfer of CSIR-CMERI technologies to three MSMEs  |  Parent Interventions: Child Learning Programs: How to Find the Right One for You  |  Rajagiri Round Table: Fitness Challenge for the Nation  |  
April 15, 2021 Thursday 05:15:20 PM IST

New electronic nose can detect hydrogen sulphide from sewers

Science Innovations

Scientists have developed an electronic nose with biodegradable polymer and monomer that can detect hydrogen sulphide (H2S), a poisonous, corrosive, and flammable gas produced from swamps and sewers. H2S is the primary gas produced from the microbial breakdown of organic matter in the absence of oxygen, and this necessitates easy detection of its emission from sewers and swamps.

Responding to this challenge, scientists from the Centre for Nano and Soft Matter Sciences (CeNS), Bangalore, an autonomous institute of the Department of Science & Technology, Government of India, in collaboration with their counterparts from Saudi Arabia, have developed an exceptionally sensitive and selective H2S Gas sensor developed by impersonating the neuron responsible for identification of airborne molecules or olfactory receptor neuron (ORN).

The impersonation of ORN with the help of an organic electronic device consisting of biodegradable polymer and monomer under Dr. Channabasaveshwar Yelamaggad from CeNS and Prof. Khaled N. Salama, Sensors lab, Advanced Membranes, and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia has been published in the journals ‘Materials Horizon’ and ‘Advanced Electronic Materials’ recently.

The fabricated sensor consists of a heterostructure consisting of two layers – the top layer a monomer and is realized with a novel chemical tris (keto-hydrazone), which is both porous and contains H2S specific functional groups, and the bottom layer is the active channel layer which plays a key role in altering the current and mobility of charge carriers.

Thus the synergistic combination helps to pre-concentrate the H2S molecules, initiate an acid-base chemical reaction, and thereby brings a change in the majority carriers (holes) of the channel region in the device. The capacitance sensor (a sensor that detects nearby objects by their effect on the electrical field created by the sensor) developed by the scientists showed an excellent sensitivity in detecting H2S gas with an experimental limit of detection of around 25 parts per billion. It also has high ambient stability of around 8 months without compromising sensing performance.