Guest Column: Pandemic Effect on Education  |  Parent Interventions: Fast food restaurant proximity likely doesn't affect children's weight   |  Parent Interventions: Families' remote learning experience during lockdown positive   |  Health Monitor: Helplines are Open  |  National Edu News: Dr Harsh Vardhan inaugurates the new entity CSIR-NIScPR  |  National Edu News: Remarkable indigenous technologies developed during the Covid pandemic   |  National Edu News: PM to launch Pan India Rollout of COVID-19 Vaccination drive on 16 January  |  Science Innovations: Sunscreen Lotions May Cause Breast Cancer  |  Leadership Instincts: Multi-Level School Leadership for Building Trust, Collaboration and Innovation  |  Leadership Instincts: Tsinghua teachers win “Renowned Teacher” Awards  |  Teacher Insights: NIC and CBSE to launch CollabCAD Software  |  National Edu News: Union Education Minister reviews implementation of New Education Policy- 2020  |  Policy Indications: Circular Economy, a New Book on Resource Utilisation and Sustainability  |  Teacher Insights: Flip not Flop  |  Teacher Insights: EPFL student creates a new language-analysis programme  |  
October 26, 2018 Friday 11:19:41 AM IST

Nanotubes makes way for better batteries

Science Innovations

World awaits a breakthrough in the battery technology in order to usher into a world of electric mobility, where electric vehicles rule the roads. Lithium metal batteries are seen as a promise for future. Lithium metal charges much faster and holds about 10 times more energy by volume than the lithium-ion electrodes found in just about every electronic device, including cellphones and electric cars.

However, lithium metal batteries have a problem with dendrites that grow naturally from unprotected lithium metal anodes in batteries and reach the cathode, causing the battery to eventually fail. One of the ways to slow the growth of dendrites in lithium-ion batteries is to limit how fast they charge, which is not a feasible solution for many. However, scientists of Rice University have come up with a solution based upon carbon nanotubes to eliminate this problem. The results are published in the journal, Advanced Materials.

"You just coat a lithium metal foil with a multiwalled carbon nanotube film. The lithium dopes the nanotube film, which turns from black to red, and the film in turn diffuses the lithium ions," suggests the author of the study. When the battery is in use, the film discharges stored ions and the underlying lithium anode refills it, maintaining the film's ability to stop dendrite growth.


Source: https://onlinelibrary.wiley.com/doi/10.1002/adma.201803869

Comments