Education Information: Not Sure of Reliability of News? Get It Verified at Covid19 Fact Check Unit  |  Science Innovations: Covid-19: DST funded startup develops chemical free silver based disinfectant   |  Technology Inceptions: A cost-effective virucidal coating of surgical masks from IIT Kanpur  |  Leadership Instincts: CSIR-IMTECH takes up sample testing for Covid-19  |  Creative Living: Music Industry Turns to Social Media To Bring Solace in Times of Pandemic  |  National Edu News: Hack the Crisis, Online Hackathon for Covid 19 Solutions  |  National Edu News: HRD Minister launches MHRD AICTE COVID-19 Student Helpline Portal   |  Science Innovations: University of Pittsburgh Covid-19 Vaccine Undergoes Animal Trials Successfully  |  Teacher Insights: UNICEF launches #ReadtheWorld initiative for children   |  Science Innovations: Covid-19 -Tracing the Route Map of the Clever Spiky Protein  |  Teacher Insights: Dr Christine Yao announced as BBC New Generation Thinker  |  International Edu News: New research on COVID-19's impact on youth mental health   |  Teacher Insights: Cambridge researchers awarded European Research Council funding  |  International Edu News: Oxford University launches world’s first COVID-19 government response tracker  |  Parent Interventions: New treatment for childhood anxiety works by changing parent behaviour  |  
February 12, 2018 Monday 03:53:43 PM IST

“MOF” the future

Science Innovations

12th February, 2018: Researchers of University in Melbourne, in collaboration with those of The University of Texas, have developed a new type of membranes based on metal-organic frameworks (MOFs). The new type of materials has the largest internal surface area of any known substance and act like a super sponge. The research has found out that the MOF membranes could mimic the function of a filter due to the “ion selectivity” exhibited by these organic cell membranes.

MOF membranes are expected to perform the dual functions of removing salts from seawater and separating metal ions in a highly efficient and cost effective manner. They should find application in desalination and mining industries. Especially, the MOF-membrane could replace the reverse osmosis membranes, with much greater energy efficiency.

Similarly, in the mining industry, these new-found membranes could be employed to reduce water pollution as well as to recover valuable metals. For example, the MOF-membranes could facilitate purification of Lithium, which is used for construction of new generation batteries, from salt and waste water streams.

“We can use our findings to address the challenges of water desalination. Instead of relying on the current costly and energy intensive processes, this research opens up the potential for removing salt ions from water in a far more energy efficient and environmentally sustainable way,” says Professor Huanting Wang of Monash University.


“The prospect of using MOFs for sustainable water filtration is incredibly exciting from a public good perspective, while delivering a better way of extracting lithium ions to meet global demand could create new industries,” said Dr Hill of University in Melbourne.

According to Professor Benny Freeman of University of Texas in Austin, “Produced water from shale gas fields in Texas is rich in lithium. Advanced separation materials concepts, such as this, could potentially turn this waste stream into a resource recovery opportunity.”


Comments