Leadership Instincts: UW launches Faculty Diversity Initiative  |  Parent Interventions: Participating in engagement schemes improves young people’s wellbeing  |  Teacher Insights: Foreign language learners should be exposed to slang in the classroom   |  Teacher Insights: Site announced for new specialist mathematics school   |  Parent Interventions: New research shows north-south divide in family law  |  Teacher Insights: Lancaster Castle provides focus for lecture on importance of heritage sites  |  Teacher Insights: Tactile books adapted for blind children  |  Parent Interventions: 'Sleep hygiene' should be integrated into epilepsy diagnosis & management   |  International Edu News: University of Birmingham signs up to global UN agreement   |  International Edu News: Credit card-sized soft pumps power wearable artificial muscles  |  Parent Interventions: High fructose diets could cause immune system damage  |  International Edu News: Submit short films to Bristol Science Film Festival 2021  |  International Edu News: Attachable Skin Monitors that Wick the Sweat Away​  |  Parent Interventions: Scientists model a peculiar type of breast cancer  |  International Edu News: NTU Singapore student start-up builds robots for pandemic-proof delivery  |  
June 16, 2020 Tuesday 01:24:45 PM IST

MIT Engineers Develop 'brain-on-a-chip'

Image courtesy MIT

MIT designers have designed a 'brain-on-a-chip' small than a piece of confetti, that is made from tens of thousands of artificial brain synapses known as memristors- silicon-based components that mimic the information-transmitting synapses in the human brain. The researchers borrowed from principles of metallurgy to fabricate each memristor from alloys of silver and copper, along with silicon. When they ran the chip through several visual tasks, the chip was able to “remember” stored images and reproduce them many times over, in versions that were crisper and cleaner compared with existing memristor designs made with unalloyed elements. 
Memristors or memory transistors are an essential element in neuromorphic computing. It would serve as the transistor in a circuit, though its working would more closely resemble a brain synapse-the junction between two neurons. The synapse receives signals from one neuron, in the form of ions, and sends a corresponding signal to the next neuron.
Like a brain synapse, a memristor would also be able to “remember” the value associated with a given current strength, and produce the exact same signal the next time it receives a similar current. This could ensure that the answer to a complex equation, or the visual classification of an object, is reliable — a feat that normally involves multiple transistors and capacitors.
Ultimately, scientists envision that memristors would require far less chip real estate than conventional transistors, enabling powerful, portable computing devices that do not rely on supercomputers, or even connections to the Internet.
More details: http://news.mit.edu/2020/thousands-artificial-brain-synapses-single-chip-0608