Rajagiri Round Table: Educating India- Listening to Innovative Teachers-76th Rajagiri Round Table  |  Cover Story: A New Era of Instructional Design  |  Best Practices: Continental Hospitals Set up a Super Specialty Clinic in IIT Hyderabad  |  Science Innovations: New cancer treatment developed by MIT  |  Leadership Instincts: Disappearance of Women researchers in Authorship during Pandemic  |  Technology Inceptions: MIT developed a New Successor for Mini Cheetah Robot  |  Science Innovations: IISc team develops novel computational model to predict ‘change blindness’  |  Science Innovations: Immune System Responds Better to Vaccination in Morning Hours  |  Teacher Insights: Training in Childhood Education, New Pedagogy Enabled Innovation in Teaching  |  International Policy: UNESCO Prize for Girls’ and Women’s Education 2021  |  Leadership Instincts: UNESCO Prize for Girls’ and Women’s Education 2021  |  Health Monitor: Intensive therapy better for Cerebral Palsy  |  Parent Interventions: Intensive therapy better for Cerebral Palsy  |  Science Innovations: Intensive therapy better for Cerebral Palsy  |  International Edu News: TutorComp- a new platform for online tutoring in UAE.  |  
June 16, 2020 Tuesday 01:24:45 PM IST

MIT Engineers Develop 'brain-on-a-chip'

Image courtesy MIT

MIT designers have designed a 'brain-on-a-chip' small than a piece of confetti, that is made from tens of thousands of artificial brain synapses known as memristors- silicon-based components that mimic the information-transmitting synapses in the human brain. The researchers borrowed from principles of metallurgy to fabricate each memristor from alloys of silver and copper, along with silicon. When they ran the chip through several visual tasks, the chip was able to “remember” stored images and reproduce them many times over, in versions that were crisper and cleaner compared with existing memristor designs made with unalloyed elements. 
Memristors or memory transistors are an essential element in neuromorphic computing. It would serve as the transistor in a circuit, though its working would more closely resemble a brain synapse-the junction between two neurons. The synapse receives signals from one neuron, in the form of ions, and sends a corresponding signal to the next neuron.
Like a brain synapse, a memristor would also be able to “remember” the value associated with a given current strength, and produce the exact same signal the next time it receives a similar current. This could ensure that the answer to a complex equation, or the visual classification of an object, is reliable — a feat that normally involves multiple transistors and capacitors.
Ultimately, scientists envision that memristors would require far less chip real estate than conventional transistors, enabling powerful, portable computing devices that do not rely on supercomputers, or even connections to the Internet.
More details: http://news.mit.edu/2020/thousands-artificial-brain-synapses-single-chip-0608



Comments