National Edu News: AstroSat’s Ultraviolet Imaging Telescope spots rare ultraviolet-bright stars  |  Parent Interventions: Randomized trials could help to return children safely to schools   |  Parent Interventions: How fellow students improve your own grades   |  Parent Interventions: School-made lunch 'better' for children  |  Teacher Insights: Second Anniversary of India Science, Nation’s OTT Channel  |  Leadership Instincts: Participation of MGIEP in the Implementation of NEP 2020  |  Teacher Insights: World of Puzzling Patterns  |  Education Information: HKUST Collaborates with Hang Lung to Foster Young Mathematics Talent  |  Leadership Instincts: Global Environment Outlook 6 Chinese version launched  |  Leadership Instincts: Peking University academics visits Beijing Representative Office of World Bank  |  Teacher Insights: U of T prof uses virtual reality to beam engineering lab into students' homes   |  Science Innovations: AI algorithm that can detect leaks instantly in gas pipeline networks  |  Parent Interventions: Smacking young children has long-lasting effects  |  Technology Inceptions: NUS engineers create ‘smart’ aerogel that turns air into drinking water  |  International Edu News: Free online tool calculates risk of COVID transmission in low ventilated spaces  |  
July 15, 2019 Monday 01:41:05 PM IST

MIT Develops Artificial 'Muscles' Based on Fibers

Photo Courtesy: MIT

MIT researchers have come up with a fiber based artificial 'muscle' system that can be used for robots, prosthetic limbs, or other mechanical and biomedical applications. 
The new fibers were developed by MIT postdoctoral student  Mehmet Kanik and MIT graduate student Sirma Örgüç, working with professors Polina Anikeeva, Yoel Fink, Anantha Chandrakasan, and C. Cem Taşan, and five others, using a fiber-drawing technique to combine two dissimilar polymers into a single strand of fiber. 
The key to the process is mating together two materials that have very different thermal expansion coefficients — meaning they have different rates of expansion when they are heated. This is the same principle used in many thermostats, for example, using a bimetallic strip as a way of measuring temperature. As the joined material heats up, the side that wants to expand faster is held back by the other material. As a result, the bonded material curls up, bending toward the side that is expanding more slowly. 
The new fiber based technology was developed observing how plants grows upward to get more sunlight and exposure as possible.