Education Information: Cardiff achieves ‘Champion’ status for gender equality in physics  |  Parent Interventions: Online survey to assess needs of children and young people with cancer   |  Parent Interventions: Study links severe childhood deprivation to difficulties in adulthood  |  Parent Interventions: New study aims to learn the lessons of homeschooling  |  Teacher Insights: Using e-learning to raise biosecurity awareness  |  National Edu News: Science and Technology in finding solutions to combat COVID-19  |  National Edu News: Ek Bharat Shreshtha Bharat programme  |  Health Monitor: Beware of Hepatitis D, It can Lead to Hepatocellular Carcinoma  |  Teacher Insights: Education project to understand Birmingham learning at home during COVID-19  |  Education Information: UoG launches new onlines to meet some of the challenges of Covid-19  |  Teacher Insights: Professor Woolfson awarded Humboldt Research Prize  |  Parent Interventions: Parents paying heavy price for lockdown  |  Teacher Insights: Great Science Share brings science investigations into homes  |  Education Information: App will reduce high risk of falls during and after Lockdown  |  Education Information: University of Manchester to decarbonise its investment portfolio  |  
October 01, 2019 Tuesday 06:23:07 AM IST

Maths Puzzle 'Narrow Escape Problem'Helps How Our Cells Track Invaders

PublicDomainPictures

The classic maths puzzle known as 'narrow escape problem' can help us know how our cells develop immunity to a invading pathogens. This was found out bya  team of biologists, immunologists and mathematicians of Macquarie University. 
“This is a new application for some familiar equations,” says co-author Justin Tzou from Macquarie University’s Department of Mathematics and Statistics. Tzou worked with colleagues at the universities of Oxford and Cambridge in the UK, the University of British Columbia in Canada, and the University of Skövde in Sweden to analyse how potential pathogens are probed by T cells, which identify and attack invaders. The researchers discovered that the equations used in the narrow escape problem play a key role in determining whether an immune response is triggered.
The narrow escape problem turns out to be a close cousin of the situation with T cell receptors,” Justin says. “It is about determining how long a diffusing particle remains in a certain region before escaping.” 
The unique shape of T cells creates what has been termed a “close-contact zone” for triggering molecules called T cell receptors. Unlike most cells, which have relatively smooth surfaces, T cells are covered in ruffles, bumps and other protrusions.  Scientists have known for a long time that T cell receptor molecules sit on the surface of the cells to recognise enemies and trigger a hostile response. The receptors contain molecular patterns that mirror those found on the surfaces of bacteria, tumours, and other dangerous interlopers. But exactly how the process of recognition and triggering works – and particularly how it works so quickly and accurately – has been a mystery. The findings were reported in the journal Proceedings of the National Academy of Sciences.


Comments