Cover Story: Mark of a School  |  Education Information: Delhi Asks Government Schools to Ensure Bag Weight Criteria  |  Management lessons: Employees Concerned About Job Meaning As Much as Pay Cheque  |  National Edu News: CBSE makes Mandatory for Schools to Become Water Efficient in Next Three Years.  |  Health Monitor: Protein Treatment to Supplement Insulin Therapy for Diabetes Developed  |  Management lessons: Failures Do Not Often Lead to Valuable Learning  |  Technology Inceptions: Apple's Latest iPhone 11 Range  |  Science Innovations: Wildflower Adapts to Climate Change  |  Parent Interventions: Family-School Initiative Benefits Students  |  Technology Inceptions: How to Reduce Heat Generated in Artificial Retina?  |  Science Innovations: How Uncertainty in Findings Impact Credibility of Climate Scientists  |  Teacher Insights: How Children Learn and Decide What to Teach  |  Health Monitor: New Solution to Reduce Tissue Damage in Heart Attack Developed  |  Education Information: AIIMS Bhubaneswar Got Second in Kayakalp Award for Second Year in a Row  |  Education Information: India gets maximum foreign students from Nepal, Karnataka for higher edu: HRD  |  
October 01, 2019 Tuesday 06:23:07 AM IST

Maths Puzzle 'Narrow Escape Problem'Helps How Our Cells Track Invaders

PublicDomainPictures

The classic maths puzzle known as 'narrow escape problem' can help us know how our cells develop immunity to a invading pathogens. This was found out bya  team of biologists, immunologists and mathematicians of Macquarie University. 
“This is a new application for some familiar equations,” says co-author Justin Tzou from Macquarie University’s Department of Mathematics and Statistics. Tzou worked with colleagues at the universities of Oxford and Cambridge in the UK, the University of British Columbia in Canada, and the University of Skövde in Sweden to analyse how potential pathogens are probed by T cells, which identify and attack invaders. The researchers discovered that the equations used in the narrow escape problem play a key role in determining whether an immune response is triggered.
The narrow escape problem turns out to be a close cousin of the situation with T cell receptors,” Justin says. “It is about determining how long a diffusing particle remains in a certain region before escaping.” 
The unique shape of T cells creates what has been termed a “close-contact zone” for triggering molecules called T cell receptors. Unlike most cells, which have relatively smooth surfaces, T cells are covered in ruffles, bumps and other protrusions.  Scientists have known for a long time that T cell receptor molecules sit on the surface of the cells to recognise enemies and trigger a hostile response. The receptors contain molecular patterns that mirror those found on the surfaces of bacteria, tumours, and other dangerous interlopers. But exactly how the process of recognition and triggering works – and particularly how it works so quickly and accurately – has been a mystery. The findings were reported in the journal Proceedings of the National Academy of Sciences.


Comments