Leadership Instincts: Spartan Athletics partners with MSU Burgess Institute   |  Leadership Instincts: UW launches Faculty Diversity Initiative  |  Parent Interventions: Participating in engagement schemes improves young people’s wellbeing  |  Teacher Insights: Foreign language learners should be exposed to slang in the classroom   |  Teacher Insights: Site announced for new specialist mathematics school   |  Parent Interventions: New research shows north-south divide in family law  |  Teacher Insights: Lancaster Castle provides focus for lecture on importance of heritage sites  |  Teacher Insights: Tactile books adapted for blind children  |  Parent Interventions: 'Sleep hygiene' should be integrated into epilepsy diagnosis & management   |  International Edu News: University of Birmingham signs up to global UN agreement   |  International Edu News: Credit card-sized soft pumps power wearable artificial muscles  |  Parent Interventions: High fructose diets could cause immune system damage  |  International Edu News: Submit short films to Bristol Science Film Festival 2021  |  International Edu News: Attachable Skin Monitors that Wick the Sweat Away​  |  Parent Interventions: Scientists model a peculiar type of breast cancer  |  
October 01, 2019 Tuesday 06:23:07 AM IST

Maths Puzzle 'Narrow Escape Problem'Helps How Our Cells Track Invaders

PublicDomainPictures

The classic maths puzzle known as 'narrow escape problem' can help us know how our cells develop immunity to a invading pathogens. This was found out bya  team of biologists, immunologists and mathematicians of Macquarie University. 
“This is a new application for some familiar equations,” says co-author Justin Tzou from Macquarie University’s Department of Mathematics and Statistics. Tzou worked with colleagues at the universities of Oxford and Cambridge in the UK, the University of British Columbia in Canada, and the University of Skövde in Sweden to analyse how potential pathogens are probed by T cells, which identify and attack invaders. The researchers discovered that the equations used in the narrow escape problem play a key role in determining whether an immune response is triggered.
The narrow escape problem turns out to be a close cousin of the situation with T cell receptors,” Justin says. “It is about determining how long a diffusing particle remains in a certain region before escaping.” 
The unique shape of T cells creates what has been termed a “close-contact zone” for triggering molecules called T cell receptors. Unlike most cells, which have relatively smooth surfaces, T cells are covered in ruffles, bumps and other protrusions.  Scientists have known for a long time that T cell receptor molecules sit on the surface of the cells to recognise enemies and trigger a hostile response. The receptors contain molecular patterns that mirror those found on the surfaces of bacteria, tumours, and other dangerous interlopers. But exactly how the process of recognition and triggering works – and particularly how it works so quickly and accurately – has been a mystery. The findings were reported in the journal Proceedings of the National Academy of Sciences.


Comments