Policy Indications: India’s Impending Growth in Education and Skills Market: A Report  |  Technology Inceptions: Strong Soft Materials are on the Move!  |  Rajagiri Round Table: Learning Through Games-Art and Science of Serious Games  |  Science Innovations: How Nucleoli Exist as Stable Droplets within the Nucleus?  |  Career News: Indian School of Business Inviting application for Aspiring Entrepreneurs  |  Health Monitor: Early Diagnosis and Treatment of Autism Spectrum Disorder Effective  |  Health Monitor: “School Meal Coalition” an Initiative by the UN  |  Policy Indications: WHO’s #HealthyAtHome Challenge for Students  |  Science Innovations: Another Planet Discovery!  |  Higher Studies: Hebrew University of Jerusalem's International Med-Tech Innovation MBA  |  Higher Studies: University of Birmingham Dubai invites applications for M.Sc. Urban Planning  |  Leadership Instincts: UNICEF’s comprehensive statistical analysis finds that nearly 240 million childr  |  Technology Inceptions: Quantum Dots can be Improvised in Tracking Biochemical Pathways of a Drug  |  Technology Inceptions: MIT promotes ‘Back to Bicycles’ with Artificial Intelligence  |  Policy Indications: Cambridge’s New Curriculum matches NEP 2020  |  
October 27, 2018 Saturday 10:59:57 AM IST

Material that regulate temperature just like a human body invented

Science Innovations

Researchers of University of Nottingham have come out with cutting-edge material that can regulate its own temperature and could equally be used to treat burns and help space capsules withstand atmospheric forces is discovered.

As per reports published in the journal Scientific Reports, temperature-dependent polymer absorber, which controls its own temperature using a network of multiple microchannels with active flowing fluids (fluidics) as a method and proof of concept is discovered.

"This bio-inspired engineering approach advances the structural assembly of polymers for use in advanced materials. Nature uses fluidics to regulate and manage temperature in mammals and in plants to absorb solar radiation though photosynthesis and this research used a leaf-like model to mimic this function in the polymer."

This kind of heat flow management could also prove invaluable in space flight where high solar loads can cause thermal stresses on the structural integrity of space capsules.


By regulation of the structural material temperature of the vehicle, this will not only advance structural properties but could also generate useful power. This thermal energy could be removed from the re-circulated fluid system to be stored in a reservoir tank on board the capsule. Once captured, the energy could be converted into electrical energy or to heat water for use by the crew.

Source:https://www.nottingham.ac.uk/news/pressreleases/2018/october/new-composite-material-that-can-cool-itself-down-under-extreme-temperatures.aspx


Comments