Technology Inceptions: Tesla to Start Delivering Model 3 to China Buyers in March  |  Technology Inceptions: ISRO Working on Chandrayaan-2 Launch for Next Month  |  Parent Interventions: Parents can influence kids' musical tastes  |  Parent Interventions: Discipline strategies to tackle misbehaviour  |  Science Innovations: New properties of sulphur atom   |  Science Innovations: Psychiatric diseases linked to molecular set-up  |  Cover Story: NURTURE AGRI-BUSINESS  |  Cover Story: A friend in weed Floating farms on weed islands   |  Rajagiri Round Table: Cultivate New Tech Farm Beckons Gen Next  |  Parent Interventions: Stronger Self-Regulation In Childhood to Boost Resilience  |  Parent Interventions: Youth with good relationships stand up against bullying  |  Technology Inceptions: Volvo & Skanska’s Electric Site Reduces Carbon Emissions By 98%  |  Technology Inceptions: ISRO Launches GSAT-7A Military Communications Satellite on Board GSLV-F11 Rocket  |  Cover Story: WHEN FOOD COMES CALLING  |  Cover Story: Yours Online, Kudumbashree  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board

May 03, 2018 Thursday 03:08:01 PM IST
Key Towards Next-Generation Computing

Corvallis, USA: Oregon State University (OSU) researchers have developed a new material that could be a key step towards the next generation of supercomputers. Those “quantum computers” are expected to solve problems well beyond the reach of existing computers while working much faster and consuming significantly less energy. 

The team developed an inorganic compound that adopts a crystal structure that can sustain a new state of matter known as “quantum spin liquid”, the next step towards quantum computing. In the new compound, “lithium osmium oxide”, osmium atoms form a honeycomb-like structure, precipitating a phenomenon called “magnetic frustration” that could lead to quantum spin liquid as predicted by condensed matter physics theorists. 

The lithium osmium oxide discovered at OSU shows no magnetic order even when frozen to nearly absolute zero, which could point to an underlying quantum spin liquid state.


Comments