Career News: 13 Japanese companies to attend JAPAN DAY 2021 @IIT Hyderabad  |  Higher Studies: IELTS Mock Tests: Benefits and Characteristics  |  Teacher Insights: New Features in Moodle 4.0  |  Policy Indications: India-US Launch Climate Action and Finance Mobilisation Dialogue  |  Science Innovations: Stanford University Develops Algorithm to Predict Molecular Structures  |  Technology Inceptions: Oxygen Concentrator, Generation System Developed by Indian Institute of Science  |  Teacher Insights: Early Intervention in Children Good to Prevent Dyslexia  |  Parent Interventions: Cognitive Stimulation Lowers Dementia Risk  |  Parent Interventions: Elderly Cope Better with Pandemic  |  Policy Indications: Use of Copyrighted Works in Online Education  |  Parent Interventions: Maternal Voice Reduces Pain in Preemies  |  Teacher Insights: Eye Sight of Children Affected by Online Learning  |  Expert Counsel: Afghanistan: Top Trouble Spot  |  Best Practices: 'Money Box' Project Gets National Recognition  |  Best Practices: Craft World School Support in Fighting Pandemic  |  
May 06, 2019 Monday 10:24:16 AM IST

Key to flight loss in birds

Science Innovations

Since Darwin's era, scientists have wondered how flightless birds such as emus, ostrich, kiwi, and others are related, and for decades the assumption was that they must all share a common ancestor. A team of Harvard researchers believes they may now have part of the answer. Based on precision analysis of the genomes of more than a dozen flightless birds, including an extinct moa, a team of researchers found that while different species show wide variety in the protein-coding portions of their genome, they appear to turn to the same regulatory pathways when evolving flight loss - reduced forelimbs, and loss of the 'keel' in their breastbone that anchors flight muscles. While the protein-coding genes appear to be responsible for adaptations in diet, feather function and environment, the regulatory regions seem to play a key role in the body-scaling changes that go along with flight loss. In the absence of an enhancer, proteins are not expressed during early limb development stage resulting in flightless birds.

Comments