Health Monitor: Care for your Gut  |  Education Information: CBSE cancels class 10 Board Exams, postpones Class 12th Board Exams  |  Policy Indications: Dr Harsh Vardhan announces launch of `Aahaar Kranti’  |  Teacher Insights: X or Y? Learning is Beyond Getting the Equations Right!  |  Policy Indications: Atal Innovation Mission collaborates with Bayer  |  Parent Interventions: NITI Aayog Launches‘Poshan Gyan’, a Digital Repository on Nutrition Information  |  Education Information: EdCIL pays a highest ever dividend of Rs 12.5 Crore for the year 2019-20  |  National Edu News: Fitness Challenge for the Nation - 70th RRT Conference Intl. on 16th April  |  Parent Interventions: Reading for Fun Improves Language Skills  |  Technology Inceptions: Xiaomi Redmi Note 10 Pro  |  Technology Inceptions: Canon New image Runner Advance Dx  |  Technology Inceptions: Boat Bar 4000 DA  |  Teacher Insights: Digital Tool to Detect Fake News  |  Science Innovations: HGCO19: starting the enrolment for the PhaseI/II human clinical trials  |  National Edu News: Scientists discover the farthest Gamma-ray emitting active galaxy   |  
May 06, 2019 Monday 10:24:16 AM IST

Key to flight loss in birds

Science Innovations

Since Darwin's era, scientists have wondered how flightless birds such as emus, ostrich, kiwi, and others are related, and for decades the assumption was that they must all share a common ancestor. A team of Harvard researchers believes they may now have part of the answer. Based on precision analysis of the genomes of more than a dozen flightless birds, including an extinct moa, a team of researchers found that while different species show wide variety in the protein-coding portions of their genome, they appear to turn to the same regulatory pathways when evolving flight loss - reduced forelimbs, and loss of the 'keel' in their breastbone that anchors flight muscles. While the protein-coding genes appear to be responsible for adaptations in diet, feather function and environment, the regulatory regions seem to play a key role in the body-scaling changes that go along with flight loss. In the absence of an enhancer, proteins are not expressed during early limb development stage resulting in flightless birds.

Comments