Technology Inceptions: Powerful Robots Helps in Faster Detection of Bridge Defects  |  Teacher Insights: Are you susceptible to persuasion?   |  Science Innovations: Mushrooms to help fight TB  |  Management lessons: How to Create Cool Brands and Stay Cool  |  Health Monitor: Honey Helps Increase Testosterone Levels in Males  |  Parent Interventions: Women Oncologists Skip Scientific Conference to Take Care of Children  |  Career News: Chinmaya University-CPPR Announce MA in Public Policy and Governance Course  |  Parent Interventions: Electrical zap to retrieve memory  |  Science Innovations: Laura Kreidberg: Trying to Spot the First Sign of Life Outside Earth  |  Parent Interventions: Don't Let Children Drink Too Much Juice, Sugar Water With Little Nutrients  |  Technology Inceptions: Low-Cost Tissue Freezing Device to Help In Breast Cancer Treatment  |  Science Innovations: Exomoons May Become Quasi-planets  |  Science Innovations: Blue Tongue Lizard Babies As Clever as Adults  |  Parent Interventions: Quality Sleep for Teen Health   |  Technology Inceptions: MIT Develops Artificial 'Muscles' Based on Fibers  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board
  • Pallikkutam Publications

May 06, 2019 Monday 10:24:16 AM IST

Key to flight loss in birds

Science Innovations

Since Darwin's era, scientists have wondered how flightless birds such as emus, ostrich, kiwi, and others are related, and for decades the assumption was that they must all share a common ancestor. A team of Harvard researchers believes they may now have part of the answer. Based on precision analysis of the genomes of more than a dozen flightless birds, including an extinct moa, a team of researchers found that while different species show wide variety in the protein-coding portions of their genome, they appear to turn to the same regulatory pathways when evolving flight loss - reduced forelimbs, and loss of the 'keel' in their breastbone that anchors flight muscles. While the protein-coding genes appear to be responsible for adaptations in diet, feather function and environment, the regulatory regions seem to play a key role in the body-scaling changes that go along with flight loss. In the absence of an enhancer, proteins are not expressed during early limb development stage resulting in flightless birds.

Comments