Education Information: Cardiff achieves ‘Champion’ status for gender equality in physics  |  Parent Interventions: Online survey to assess needs of children and young people with cancer   |  Parent Interventions: Study links severe childhood deprivation to difficulties in adulthood  |  Parent Interventions: New study aims to learn the lessons of homeschooling  |  Teacher Insights: Using e-learning to raise biosecurity awareness  |  National Edu News: Science and Technology in finding solutions to combat COVID-19  |  National Edu News: Ek Bharat Shreshtha Bharat programme  |  Health Monitor: Beware of Hepatitis D, It can Lead to Hepatocellular Carcinoma  |  Teacher Insights: Education project to understand Birmingham learning at home during COVID-19  |  Education Information: UoG launches new onlines to meet some of the challenges of Covid-19  |  Teacher Insights: Professor Woolfson awarded Humboldt Research Prize  |  Parent Interventions: Parents paying heavy price for lockdown  |  Teacher Insights: Great Science Share brings science investigations into homes  |  Education Information: App will reduce high risk of falls during and after Lockdown  |  Education Information: University of Manchester to decarbonise its investment portfolio  |  
October 11, 2018 Thursday 10:40:07 AM IST

Kahne Lab prepares to combat superbugs

Science Innovations

Superbugs that are resistant to all types of antibiotic medicines has caused apocalyptic scenario in the world of medicine in recent years. If bacteria gain resistance against all types of antibiotics, then it could mean the end of allopathic medicine, people thought. However, the Khane Lab at Harvard University has come out with a method of beating superbugs at their own weaknesses.The results of the study are published in the Journal of the American Chemical Society

The antibiotic-resistant bacteria, so-called Gram-negative bacteria, have a thick outer defense that protects them from toxins, antibiotics, etc.

Researchers at the Kahne Lab have meticulously documented how superbugs work. They identified a number of previously unknown molecular machines and processes that build the bacteria's stubborn barrier, called the outer membrane. Gram-negative bacteria build their outer membrane with a burly glycolipid called lipopolysaccharide (LPS). Hence, if we could prevent LPS from reaching the outer membrane, their defense could weaken.

The researchers used a novel fluorescence-based tool to study the transport ofLPS. If transport stops, ATP hydrolysis stops, they found. In addition, even if the cell has LPS in reserve and energy to spare, it will still stop transport.


"Using mutants of the transport machinery, we find that the final amount of LPS delivered into the membrane depends on the affinity of the outer membrane translocon for LPS."

It is expected that the Kahne Lab's investigative work could one day lead to new treatments to combat antibiotic resistance and save lives, globally.

DOI: 10.1021/jacs.8b07656


Comments