Teacher Insights: Know about how to choose the best MPPSC coaching institute  |  National Edu News: Swinburne University of Technology & IIT H launch the joint doctoral program  |  Policy Indications: India & Japan collaborations for innovations on Hydrogen based technologies  |  National Edu News: Education Minister addresses at the Annual Convocation of IIM Rohtak  |  Education Information: UPSC postpones tests and Interviews of some examinations  |  National Edu News: Piyush Goyal launches the Startup India Seed Fund Scheme  |  Teacher Insights: Are you Proficient in English?  |  National Edu News: National climate vulnerability assessment sees 8 states as highly vulnerable  |  National Edu News: Education minister e-launches long-lasting hygiene product DuroKea Series  |  National Edu News: Punjab’s new nutrient rich crop varieties can satisfy India's nutritional needs   |  Guest Column: Delicious Dhabas  |  International Edu News: 2D Perovskites for Solar Cells and LEDS  |  International Edu News: AI Model for Predicting Tsunami  |  International Edu News: Wearable Sweat Sensors on a Bandage  |  International Edu News: Smallest High Resolution Microscope  |  
August 09, 2019 Friday 12:28:16 PM IST

Fight climate change with plant gene

Science Innovations

The genetic and molecular mechanisms that govern which parts of the soil roots explore remain largely unknown. Now, researchers at Salk Institute for Biological Studies, California, have discovered a gene that determines whether roots grow deep or shallow in the soil.

The findings, published in Cell, will also allow researchers to develop plants that can help combat climate change as part of Salk's Harnessing Plants Initiative. The initiative aims to grow plants with more robust and deeper roots that can store increased amounts of carbon underground for longer to reduce carbon dioxide in the atmosphere.

The researchers used the model plant ‘thale cress’ (Arabidopsis thaliana) to identify genes and found that one gene, called EXOCYST70A3, directly regulates root system architecture by controlling the auxin pathway without disrupting other pathways by affecting the distribution of PIN4, a protein known to influence auxin transport. When the researchers altered the EXOCYST70A3 gene, they found that the orientation of the root system shifted and more roots grew deeper into the soil. 


Comments