Teacher Insights: Teacher Expectations Can Have Powerful Impact on Students Academic Achievement  |  Policy Indications: Make Sure the Digital Technology Works for Public Good  |  Teacher Insights: The Significance of Social Emotional Learning Curriculum in Schools  |  Health Monitor: Forgetting is a Form of Learning  |  Higher Studies: University of Manchester Invites Application for LLB and LLM Programmes   |  Health Monitor: Is There a Blue Spot Inside our Brain?  |  Parent Interventions: Babies born during the Pandemic Performs Lower during Developmental Screening  |  Policy Indications: Invest in Structural Steel R&D : Prof BS Murty  |  Management lessons: ONPASSIVE Technologies Shows the Way in Rewarding Outperformers  |  Parent Interventions: Can We Make Our Kids Smarter?  |  Health Monitor: More Sleep Means Better Quality of Life  |  Parent Interventions: New Year Resolution for Parents  |  Health Monitor: Health benefits of Choline in Kids  |  Health Monitor: It is never too late to Learn  |  Best Practices: IIT Hyderabad Improves ARIIA Ranking to 7  |  
August 09, 2019 Friday 12:28:16 PM IST

Fight climate change with plant gene

Science Innovations

The genetic and molecular mechanisms that govern which parts of the soil roots explore remain largely unknown. Now, researchers at Salk Institute for Biological Studies, California, have discovered a gene that determines whether roots grow deep or shallow in the soil.

The findings, published in Cell, will also allow researchers to develop plants that can help combat climate change as part of Salk's Harnessing Plants Initiative. The initiative aims to grow plants with more robust and deeper roots that can store increased amounts of carbon underground for longer to reduce carbon dioxide in the atmosphere.

The researchers used the model plant ‘thale cress’ (Arabidopsis thaliana) to identify genes and found that one gene, called EXOCYST70A3, directly regulates root system architecture by controlling the auxin pathway without disrupting other pathways by affecting the distribution of PIN4, a protein known to influence auxin transport. When the researchers altered the EXOCYST70A3 gene, they found that the orientation of the root system shifted and more roots grew deeper into the soil. 


Comments