Teacher Insights: Know about how to choose the best MPPSC coaching institute  |  National Edu News: Swinburne University of Technology & IIT H launch the joint doctoral program  |  Policy Indications: India & Japan collaborations for innovations on Hydrogen based technologies  |  National Edu News: Education Minister addresses at the Annual Convocation of IIM Rohtak  |  Education Information: UPSC postpones tests and Interviews of some examinations  |  National Edu News: Piyush Goyal launches the Startup India Seed Fund Scheme  |  Teacher Insights: Are you Proficient in English?  |  National Edu News: National climate vulnerability assessment sees 8 states as highly vulnerable  |  National Edu News: Education minister e-launches long-lasting hygiene product DuroKea Series  |  National Edu News: Punjab’s new nutrient rich crop varieties can satisfy India's nutritional needs   |  Guest Column: Delicious Dhabas  |  International Edu News: 2D Perovskites for Solar Cells and LEDS  |  International Edu News: AI Model for Predicting Tsunami  |  International Edu News: Wearable Sweat Sensors on a Bandage  |  International Edu News: Smallest High Resolution Microscope  |  
June 17, 2019 Monday 01:31:07 PM IST

Exercise activates memory neural networks

Teacher Insights

A new University of Maryland study of healthy older adults shows that exercise increases activation in the brain circuits associated with memory - including the hippocampus - which shrinks with age and is the brain region attacked first in Alzheimer's disease.

Regular exercise can increase the volume of the hippocampus, according to the study. Theresearch team measured the brain activity using functional Magnetic Resonance Imaging (fMRI) of healthy participants aged 55-85 who were asked to perform a memory task that involves identifying famous names and non-famous ones. The action of remembering famous names activates a neural network related to semantic memory, which is known to deteriorate over time with memory loss. This test was conducted 30 minutes after a session of exercise on an exercise bike and on a separate day after a period of rest. Participants' brain activation while correctly remembering names was significantly greater after exercise in comparison to the activation after rest.  Just like a muscle adapts to repeated use, exercise may flex cognitive neural networks in ways that promote adaptations over time and lend to increased network integrity and function and allow more efficient access to memories.


Comments