Technology Inceptions: HP ProBook 445 G6 Business Laptop launched  |  Rajagiri Round Table: 51st Rajagiri Round Table:Listening Skills Should Become Part of Curriculum  |  National Edu News: India Launches NISHTHA, the largest Teachers' Training Programme in the World  |  Technology Inceptions: Black Shark to launch new phones  |  Science Innovations: Designer algae to produce fuels   |  Parent Interventions: For a stronger father-child relationship  |  Parent Interventions: Vitamin D Deficiency in Middle Childhood Can Cause Aggressive Behavior  |  Technology Inceptions: Flipkart revamps seller onboarding process  |  Technology Inceptions: New range of Nokia Mesh Wi-Fi Router  |  Teacher Insights: Vacation to reduce cardiovascular diseases  |  Science Innovations: Chemo drug with fewer side effects  |  National Edu News: Kala Utsav 2019 Guidelines Released by MHRD  |  Education Information: Chandrayaan-2 Precisely Inserted in Defined Orbit  |  Health Monitor: Fascination for Slimness Has Racial Origins, Not Linked to Health  |  Parent Interventions: Online Brain Games Help in Multi-Tasking at Old Age   |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board
  • Pallikkutam Publications

October 15, 2018 Monday 03:52:48 PM IST

Engineers design molecules that store thermal energy

Science Innovations

A research group from Chalmers University of Technology, Sweden, have made rapid progress towards the development of a molecule which can store solar energy for later use. They have designed, what is called, Molecular Solar Thermal Energy Storage (MOST). The results are published in the journal Energy & Environmental Science.

The energy system MOST works in a circular manner. First, the liquid captures energy from sunlight, in a solar thermal collector on the roof of a building. Then it is stored at room temperature, leading to minimal energy losses. When the energy is needed, it can be drawn through the catalyst so that the liquid heats up. The hot liquids are used in the domestic heating systems, and later it can be sent back up to the roof to collect more energy. It defines a system completely free of emissions, and without damaging the molecules.

The molecule is made from carbon, hydrogen and nitrogen and has the unique property that when it is hit by sunlight, it is transformed into an energy-rich isomer -- a molecule which consists of the same atoms, but bound together in a different way. This isomer can then be stored for use when that energy is later needed -- for example, at night or in winter.

"The energy in this isomer can now be stored for up to 18 years. And when we come to extract the energy and use it, we get a warmth increase which is greater than we dared hope for," says the leader of the research team, Kasper Moth-Poulsen, Professor at the Department of Chemistry and Chemical Engineering.


The research group has also developed a catalyst for controlling the release of the stored energy, which acts as a filter, through which the liquid flows, creating a reaction which warms the liquid by 63 degrees Celsius. If the liquid has a temperature of 20C when it pumps through the filter, it comes out the other side at 83 degrees Celsius. At the same time, it returns the molecule to its original form, so that it can be then reused in the warming system.

Researchers hope that the technology could be in commercial use within 10 years.

DOI: 10.1039/C8EE01011K


Comments