Life Inspirations: Sushila Sable-From Waste Picker to Ambassador of Climate Change  |  Science Innovations: Killing drug-resistant bacteria  |  Technology Inceptions: Canon EOS 200D II DSLR With Dual Pixel AF  |  Teacher Insights: Exercise activates memory neural networks   |  Management lessons: BPCL Allows Women Chemical Engineers in Night Shift  |  Health Monitor: Increase in Global Alcoholism Raises Global Disease Burden  |  Parent Interventions: Obesity in Pre-Pregnancy Stage Can Affect Quality of Breast Milk  |  Higher Studies: Indian Institute of Space Science and Technology UG Admissions  |  Technology Inceptions: Now Drones to Deliver Food   |  Technology Inceptions: India to Establish One lakh Digital Villages: Ravi Shankar Prasad  |  Best Practices: FSSAI to Impose Curbs on Promoting Unhealthy Products in School Premises  |  Management lessons: E-Services Most Important in Design of Smart Tourism Organisation  |  Rajagiri Round Table: 'Draft New Educational Policy Comprehensive, Hurdles Likely in Implementation'  |  International Edu News: Estonian schools promote English  |  Technology Inceptions: Microsoft AI Helps Leading Naukrigulf.com Attract More Jobseekers, Employers  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board
  • Pallikkutam Publications

October 15, 2018 Monday 03:52:48 PM IST

Engineers design molecules that store thermal energy

Science Innovations

A research group from Chalmers University of Technology, Sweden, have made rapid progress towards the development of a molecule which can store solar energy for later use. They have designed, what is called, Molecular Solar Thermal Energy Storage (MOST). The results are published in the journal Energy & Environmental Science.

The energy system MOST works in a circular manner. First, the liquid captures energy from sunlight, in a solar thermal collector on the roof of a building. Then it is stored at room temperature, leading to minimal energy losses. When the energy is needed, it can be drawn through the catalyst so that the liquid heats up. The hot liquids are used in the domestic heating systems, and later it can be sent back up to the roof to collect more energy. It defines a system completely free of emissions, and without damaging the molecules.

The molecule is made from carbon, hydrogen and nitrogen and has the unique property that when it is hit by sunlight, it is transformed into an energy-rich isomer -- a molecule which consists of the same atoms, but bound together in a different way. This isomer can then be stored for use when that energy is later needed -- for example, at night or in winter.

"The energy in this isomer can now be stored for up to 18 years. And when we come to extract the energy and use it, we get a warmth increase which is greater than we dared hope for," says the leader of the research team, Kasper Moth-Poulsen, Professor at the Department of Chemistry and Chemical Engineering.


The research group has also developed a catalyst for controlling the release of the stored energy, which acts as a filter, through which the liquid flows, creating a reaction which warms the liquid by 63 degrees Celsius. If the liquid has a temperature of 20C when it pumps through the filter, it comes out the other side at 83 degrees Celsius. At the same time, it returns the molecule to its original form, so that it can be then reused in the warming system.

Researchers hope that the technology could be in commercial use within 10 years.

DOI: 10.1039/C8EE01011K


Comments