Policy Indications: Harvard Teacher Fellows provides new teachers, local impact  |  International Edu News: Oxford's COVID-19 vaccine offers a high level of protection  |  Leadership Instincts: Harvard University CFAR announces leadership change  |  Parent Interventions: Virtual holiday toy and joy drive  |  Leadership Instincts: New Zealand PM to receive 2020 Gleitsman International Activist Award  |  International Edu News: Science and Innovation Fellowship accepting applications  |  Policy Indications: National Coalition calls for new White House-led focus on children and youth  |  Education Information: Faculty alter new first-year requirement because of continuing Covid-19  |  Leadership Instincts: Phiala Shanahan receives Kenneth G. Wilson Award  |  Leadership Instincts: Erik Demaine wins 2020 MIT Bose Award for Excellence in Teaching  |  Education Information: Second annual MIT Science Bowl Invitational takes virtual format  |  International Edu News: Meghan Davis named 2022 Mitchell Scholar  |  National Edu News: Multilateral cooperation is the key to overcoming global challenges: Minister  |  National Edu News: Tenth edition of National Science Film Festival kicks offin a virtual mode  |  Technology Inceptions: ‘WalkON Suit 4’ Releases Paraplegics from Wheelchairs​  |  
October 15, 2018 Monday 03:52:48 PM IST

Engineers design molecules that store thermal energy

Science Innovations

A research group from Chalmers University of Technology, Sweden, have made rapid progress towards the development of a molecule which can store solar energy for later use. They have designed, what is called, Molecular Solar Thermal Energy Storage (MOST). The results are published in the journal Energy & Environmental Science.

The energy system MOST works in a circular manner. First, the liquid captures energy from sunlight, in a solar thermal collector on the roof of a building. Then it is stored at room temperature, leading to minimal energy losses. When the energy is needed, it can be drawn through the catalyst so that the liquid heats up. The hot liquids are used in the domestic heating systems, and later it can be sent back up to the roof to collect more energy. It defines a system completely free of emissions, and without damaging the molecules.

The molecule is made from carbon, hydrogen and nitrogen and has the unique property that when it is hit by sunlight, it is transformed into an energy-rich isomer -- a molecule which consists of the same atoms, but bound together in a different way. This isomer can then be stored for use when that energy is later needed -- for example, at night or in winter.

"The energy in this isomer can now be stored for up to 18 years. And when we come to extract the energy and use it, we get a warmth increase which is greater than we dared hope for," says the leader of the research team, Kasper Moth-Poulsen, Professor at the Department of Chemistry and Chemical Engineering.


The research group has also developed a catalyst for controlling the release of the stored energy, which acts as a filter, through which the liquid flows, creating a reaction which warms the liquid by 63 degrees Celsius. If the liquid has a temperature of 20C when it pumps through the filter, it comes out the other side at 83 degrees Celsius. At the same time, it returns the molecule to its original form, so that it can be then reused in the warming system.

Researchers hope that the technology could be in commercial use within 10 years.

DOI: 10.1039/C8EE01011K


Comments