Technology Inceptions: Tesla to Start Delivering Model 3 to China Buyers in March  |  Technology Inceptions: ISRO Working on Chandrayaan-2 Launch for Next Month  |  Parent Interventions: Parents can influence kids' musical tastes  |  Parent Interventions: Discipline strategies to tackle misbehaviour  |  Science Innovations: New properties of sulphur atom   |  Science Innovations: Psychiatric diseases linked to molecular set-up  |  Cover Story: NURTURE AGRI-BUSINESS  |  Cover Story: A friend in weed Floating farms on weed islands   |  Rajagiri Round Table: Cultivate New Tech Farm Beckons Gen Next  |  Parent Interventions: Stronger Self-Regulation In Childhood to Boost Resilience  |  Parent Interventions: Youth with good relationships stand up against bullying  |  Technology Inceptions: Volvo & Skanska’s Electric Site Reduces Carbon Emissions By 98%  |  Technology Inceptions: ISRO Launches GSAT-7A Military Communications Satellite on Board GSLV-F11 Rocket  |  Cover Story: WHEN FOOD COMES CALLING  |  Cover Story: Yours Online, Kudumbashree  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board

October 15, 2018 Monday 03:52:48 PM IST
Engineers design molecules that store thermal energy

A research group from Chalmers University of Technology, Sweden, have made rapid progress towards the development of a molecule which can store solar energy for later use. They have designed, what is called, Molecular Solar Thermal Energy Storage (MOST). The results are published in the journal Energy & Environmental Science.

The energy system MOST works in a circular manner. First, the liquid captures energy from sunlight, in a solar thermal collector on the roof of a building. Then it is stored at room temperature, leading to minimal energy losses. When the energy is needed, it can be drawn through the catalyst so that the liquid heats up. The hot liquids are used in the domestic heating systems, and later it can be sent back up to the roof to collect more energy. It defines a system completely free of emissions, and without damaging the molecules.

The molecule is made from carbon, hydrogen and nitrogen and has the unique property that when it is hit by sunlight, it is transformed into an energy-rich isomer -- a molecule which consists of the same atoms, but bound together in a different way. This isomer can then be stored for use when that energy is later needed -- for example, at night or in winter.

"The energy in this isomer can now be stored for up to 18 years. And when we come to extract the energy and use it, we get a warmth increase which is greater than we dared hope for," says the leader of the research team, Kasper Moth-Poulsen, Professor at the Department of Chemistry and Chemical Engineering.

The research group has also developed a catalyst for controlling the release of the stored energy, which acts as a filter, through which the liquid flows, creating a reaction which warms the liquid by 63 degrees Celsius. If the liquid has a temperature of 20C when it pumps through the filter, it comes out the other side at 83 degrees Celsius. At the same time, it returns the molecule to its original form, so that it can be then reused in the warming system.

Researchers hope that the technology could be in commercial use within 10 years.

DOI: 10.1039/C8EE01011K

Comments