Guest Column: Collaboration + Research = Global Solutions   |  Teacher Insights: How Digital Technology Helps in Growth and Access to Quality Education  |  Management lessons: How Brands Use CARE to Stay on Top in Instagram  |  Hobbies &Trends: At Full Throttle  |  Finance: Bitcoin Mobile Apps Vulnerable to Security Threats: Guan-Hua Tu, MSU  |  International Edu News: Use plants' ability to tell the time to make food production more sustainable  |  International Edu News: Scientists develop new class of cancer drug with potential to treat leukaemia  |  International Edu News: Loan applications processed around midday more likely to be rejected  |  International Edu News: Researchers find climate change impacts plankton – a key marine food source  |  International Edu News: Nature must be a partner, not just a provider of services – Oxford report  |  National Edu News: Approval to MoU between India and UK on Global Innovation Partnership  |  National Edu News: Transfer of CSIR-CMERI technologies to three MSMEs  |  Parent Interventions: Child Learning Programs: How to Find the Right One for You  |  Rajagiri Round Table: Fitness Challenge for the Nation  |  Education Information: West Bengal Scholarship 2021  |  
June 07, 2019 Friday 05:04:40 PM IST

Embryo stem cells from skin

Science Innovations

Researchers at the Hebrew University of Jerusalem (HU) have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos. The work (in mouse cells) has significant implications for modelling embryonic disease and placental dysfunctions, as well as paving the way to create whole embryos from skin cells.
Research  team discovered a set of genes capable of transforming murine skin cells into all three of the cell types that comprise the early embryo: the embryo itself, the placenta and the extra-embryonic tissues, such as the umbilical cord. 
The researchers analyzed changes to the genome function inside the cells when the five genes are introduced into the cell.  The skin cells initially lose their cellular identity and then slowly acquire a new identity of one of the three early embryonic cell types. This process is governed by the levels of two of the five genes-gene ‘Eomes’ and gene ‘Esrrb’. In the future, it may be possible to create entire human embryos out of human skin cells, without the need for sperm or eggs. The discovery could help solve certain infertility problems by creating human embryos in a ‘Petri dish’.

Comments