Guest Column: The Death of the Creative Writer!  |  Teacher Insights: Why the Boom in Private Tuition Business?  |  Technology Inceptions: More Heat Resilient Silver Circuitry  |  Science Innovations: Silica Nanoparticles for Precise Drug Targetting  |  National Edu News: IIT Hyderabad Improves in QS World University Rankings to 591-600  |  Technology Inceptions: C02 Emissions to Be Made into Animal Feed  |  Leadership Instincts: Blockchain Helping UN Interventions to End Poverty and Hunger  |  National Edu News: Three Indian Institutions in Top 200 of QS World University Rankings  |  Management lessons: Vaccines, Social Distancing, Facemasks Essential Tools to Fight Covid-19  |  Education Information: “The Language Network” to revolutionise language learning  |  Guest Column: Noetic Future Shock!  |  Rajagiri Round Table: Appropriate Pedagogy of the Digital Natives  |  Science Innovations: How to Reduce Animal Experimentation in Medicine?  |  National Edu News: Jammu & Kashmir MSMEs enlighten themselves with CSIR-CMERI Advanced Oxygen Tech  |  Teacher Insights: Brain Syncs Hearing with Vision  |  
August 22, 2019 Thursday 12:18:53 PM IST

Designer algae to produce fuels

Science Innovations

Ten species of red algae stole about 1 percent of their genes from bacteria to cope with toxic metals and salt stress in hot springs, according to a study published in the journal eLife.

These red algal species, known as Cyanidiales, also stole many genes that allow them to absorb and process different sources of carbon in the environment to provide additional sources of energy and supplement their photosynthetic lifestyle.

Finding such phenomena in nature inspires scientists to figure out how gene theft happens, and they can use these rules of nature to develop novel genetic engineering methods in the lab to benefit humans. This can be done by designing algae that produce fuels or chemicals that can clean up polluted sites.In the new study, the scientists at Rutgers Universitygenerated 10 novel Cyanidiales genomes in the genus Galdieria that thrive in hot springs, despite high temperatures and highly acidic conditions.


Comments