Technology Inceptions: HP ProBook 445 G6 Business Laptop launched  |  Rajagiri Round Table: 51st Rajagiri Round Table:Listening Skills Should Become Part of Curriculum  |  National Edu News: India Launches NISHTHA, the largest Teachers' Training Programme in the World  |  Technology Inceptions: Black Shark to launch new phones  |  Science Innovations: Designer algae to produce fuels   |  Parent Interventions: For a stronger father-child relationship  |  Parent Interventions: Vitamin D Deficiency in Middle Childhood Can Cause Aggressive Behavior  |  Technology Inceptions: Flipkart revamps seller onboarding process  |  Technology Inceptions: New range of Nokia Mesh Wi-Fi Router  |  Teacher Insights: Vacation to reduce cardiovascular diseases  |  Science Innovations: Chemo drug with fewer side effects  |  National Edu News: Kala Utsav 2019 Guidelines Released by MHRD  |  Education Information: Chandrayaan-2 Precisely Inserted in Defined Orbit  |  Health Monitor: Fascination for Slimness Has Racial Origins, Not Linked to Health  |  Parent Interventions: Online Brain Games Help in Multi-Tasking at Old Age   |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board
  • Pallikkutam Publications

June 21, 2018 Thursday 03:30:33 PM IST

Crumple Up This Keyboard and Stick It In Your Pocket

Technology Inceptions

California: Bendable portable keyboards for use with computers and other electronic devices are already on the market, but they have limited flexibility, and they're fairly sizable when rolled up for transport. Now researchers have crafted an inexpensive keyboard that is so tough, flexible and thin that it can be crumpled up and tucked in a pocket without damaging it. 

Existing keyboards incorporate either rigid push buttons inserted in a rollable sheet or a tactile sensor array patterned on a multilayered soft sheet. These devices require complicated fabrication processes, and because of their brittle components, can only withstand a slight amount of bending or rolling. But Keemin Sohn, Ji Sik Kim, Kee-Sun Sohn and colleagues wanted to develop a keyboard that could withstand the rigors of everyday life, including complete folding and harsh crumpling.

The team based the device on a sensor sheet they had previously developed. Here, they used a sheet of soft Ecoflex™ silicone rubber embedded with conductive carbon nanotubes that respond to the push of a finger by changing electrical resistance. To guide users where to press, the researchers drew squares on the surface of the sheet to represent keys for each letter, number or other character. They used an artificial neural network to teach the keyboard to identify the intended letter or character based on the location and pressure of pushes -- and associated changes in resistance -- on the keyboard. They state that their simple keyboard worked perfectly and outperformed all existing portable keypads in terms of functionality, flexibility, disposability and cost. In fact, each keyboard would cost only $1, cheap enough that it could be tossed out and replaced if it stopped working.

(Indebted to various sources)



Comments