Guest Column: The Eight Billion Opportunity!  |  Finance: Covidonomics   |  Parent Interventions: Enrichment programmes help children build knowledge  |  Parent Interventions: Half of moms-to-be at risk of preeclampsia are missing out on preventive aspirin  |  Parent Interventions: First month of data shows children at low risk of COVID-19 infection  |  Teacher Insights: First-generation learners being left behind in global education  |  Teacher Insights: Deep learning: A new engine for ecological resource research  |  Parent Interventions: Study compares the health of Irish children to those across Europe and Canada  |  Policy Indications: MHRD ensures safe shifting of stranded students of Jawahar Navodaya Vidyalayas  |  National Edu News: RNA extraction kit Agappe Chitra Magna launched commercially  |  National Edu News: Certifying Quantum Entanglement: A step towards Quantum Security  |  Leadership Instincts: IIT Guwahati discovers new ways to prevent memory loss due to Alzheimer  |  Teacher Insights: 82 UG and 42 PG Non-Engineering MOOCs to be offered on SWAYAM  |  International Edu News: Handwashing 6-10 times a day linked to lower infection risk  |  Leadership Instincts: Bristol’s photon discovery, a major step toward large-scale quantum technologies  |  
March 30, 2020 Monday 01:35:51 PM IST

CRG standardizes COVID-19 data analysis to aid international research efforts

Leadership Instincts

Researchers from the Centre for Genomic Regulation (CRG) have launched a new database to advance the international research efforts studying COVID-19. The publicly-available, free-to-use resource (https://covid.crg.eu) can be used by researchers from around the world to study how different variations of the virus grow, mutate and make proteins.

To understand how the coronavirus grows, mutates and replicates, scientists have to sequence the RNA of COVID-19. The RNA sequence reveals crucial information about the proteins the virus makes to invade human cells and replicate, which in turn informs governments on the infectiousness and severity of the pandemic.

Traditional sequencing tools can take a long time to provide results. In recent years, sequencing data in real-time has become a reality thanks to the use of nanopore sequencing technologies, revolutionizing genomics research and disease outbreak monitoring. Nanopore sequencing provides scientists and clinicians with immediate access to the DNA and RNA sequence information of any living cell in real-time, enabling a rapid response against the threat of a pandemic.

However, the raw data produced by nanopore sequencing is highly complex. Scientists and clinicians currently lack systematic guidelines for the reproducible analysis of the data, limiting the vast potential of the nascent technology.


To standardize the analysis of publicly available SARS-CoV-2 nanopore sequencing data, researchers at the Centre for Genomic Regulation (CRG) in Barcelona are using MasterOfPores, a computer program developed by the group of Eva Novoa and CRG Bioinformatics Unit. The software was first described last week in Frontiers in Genetics.

MasterOfPores can be executed on any Unix-compatible OS on a computer, cluster or cloud without the need of installing any additional software or dependencies, and is freely available in Github. The publicly-available, free-to-use resource has currently analysed 3TB of SARS-CoV-2 nanopore RNA sequencing data. The CRG researchers will continue to update the resource with new data as soon as it becomes available.


(Content Courtesy: https://www.eurekalert.org/pub_releases/2020-03/cfgr-csc032720.php)



Comments