Guest Column: The Psychotherapist with Fur and Four Legs!  |  Health Monitor: Dealing With Post Covid Syndrome  |  National Edu News: Secretary Higher Education urges students to emerge as job creators  |  National Edu News: PM addresses the 18th Convocation of Tezpur University, Assam  |  Leadership Instincts: Experts highlight the need for strengthening centre-state cooperation  |  Policy Indications: India’s global position rises both in innovations & publications  |  Education Information: Written Result of Indian Economic Service/Indian Statistical Service Examination  |  National Edu News: AstroSat’s Ultraviolet Imaging Telescope spots rare ultraviolet-bright stars  |  Parent Interventions: Randomized trials could help to return children safely to schools   |  Parent Interventions: How fellow students improve your own grades   |  Parent Interventions: School-made lunch 'better' for children  |  Teacher Insights: Second Anniversary of India Science, Nation’s OTT Channel  |  Leadership Instincts: Participation of MGIEP in the Implementation of NEP 2020  |  Teacher Insights: World of Puzzling Patterns  |  Education Information: HKUST Collaborates with Hang Lung to Foster Young Mathematics Talent  |  
October 23, 2019 Wednesday 02:04:24 PM IST

Components in Anti-Cancer Drugs Which Doesn't Destroy Healthy Cells Found

Photo by Steve Buissinne for Pixabay.com

Scientists at University of Geneva has identified a mix of four components in anti-cancer drugs that do not damage healthy cells but at the same time attack cancerous cells. It is called C2 and was found after analysing 200 combinations of differnt anti-tumour drugs to reduce the doses.
The objective of the exercise was to reduce the doses to avoid resistance of the cells and unwanted side effects on healthy cells of patients according to Patrycja Nowak-Sliwinska, a professor in the Institute of Pharmaceutical Sciences of Western Switzerland and at UNIGE and in the university's Translational Research Centre in Onco-Haematology (CRTOH). 
The UNIGE researchers focused on ten substances used to fight cancer, producing some 200 possible combinations. “We used a method we developed in our laboratory to test these different combinations simultaneously in vitro on a cancer cell and on a healthy cell. The aim was to directly compare the effects of the treatment on the two types of cells”, continues professor Nowak-Sliwinska. “We were able to eliminate the formulas that didn’t destroy the diseased cells together with those that also had an impact on the healthy cells.” Thanks to this simultaneous validation technique, the UNIGE researchers identified the most effective combinations with the fewest possible side effects on healthy cells, with one in particular standing out: C2. 
C2 – which consists of four products (tubacin, CI-994, erlotinib and dasatinib) – is developing a new and highly promising mechanism of action. “During our in vitro tests, we found that C2 killed up to 20 times more cancer cells than other combinations, while sparing healthy cells”, explains Patrick Meraldi, a professor in the Department of Cellular Physiology and Metabolism in UNIGE’s Faculty of Medicine and at the CRTOH. The special characteristic of C2 is that it targets the supernumerary centrosomes that are only found in tumour cells. “Each cell is equipped with two centrosomes, organelles that allow it to divide in two by each ‘pulling’ one half of the cell”, explains professor Meraldi. As for the cancer cells, they have more centrosomes that tug the cell in three or four directions during its division, which leads to cell death. To prevent this, the cancer cells group the centrosomes into two poles. “C2 blocks the grouping, causing a cell death specific to the tumour cells with supernumerary centrosomes, while leaving the healthy cells unharmed”, continues the Geneva-based researcher. There is a drug currently on the market that also induces divisions in three or four directions: Paclitaxel. But high doses are required, which causes numerous side effects in patients. “That’s why we want to replace the use of Paclitaxel with C2 or by a combination of both that would reduce the risk of resistance and toxicity”, says professor Nowak-Sliwinska. To do this, the UNIGE researchers have filed a patent for the C2 combination and are currently in the in vivo test phase on mice so they can observe the effects of this new formula on the entire body and not just on an isolated cell. A treatment of great promise is on the horizon.

  



Comments