National Edu News: Secretary Higher Education urges students to emerge as job creators  |  National Edu News: PM addresses the 18th Convocation of Tezpur University, Assam  |  Leadership Instincts: Experts highlight the need for strengthening centre-state cooperation  |  Policy Indications: India’s global position rises both in innovations & publications  |  Education Information: Written Result of Indian Economic Service/Indian Statistical Service Examination  |  National Edu News: AstroSat’s Ultraviolet Imaging Telescope spots rare ultraviolet-bright stars  |  Parent Interventions: Randomized trials could help to return children safely to schools   |  Parent Interventions: How fellow students improve your own grades   |  Parent Interventions: School-made lunch 'better' for children  |  Teacher Insights: Second Anniversary of India Science, Nation’s OTT Channel  |  Leadership Instincts: Participation of MGIEP in the Implementation of NEP 2020  |  Teacher Insights: World of Puzzling Patterns  |  Education Information: HKUST Collaborates with Hang Lung to Foster Young Mathematics Talent  |  Leadership Instincts: Global Environment Outlook 6 Chinese version launched  |  Leadership Instincts: Peking University academics visits Beijing Representative Office of World Bank  |  
September 13, 2019 Friday 12:24:09 PM IST

Clue to make green polymers

Science Innovations



The molecular machinery used by bacteria to resist chemicals designed to kill them could also help produce precursors for a new generation of nylon and other polymers, according to new research by scientists from Macquarie University, Australia, and the University of Leeds, UK.

Bacteria that are unaffected by antiseptics and antibiotics, often termed ‘superbugs’, are a growing problem, but exactly how they develop resistance is not fully understood.

The gene that encodes the Ace I protein is old, but chlorhexidine was only created in the twentieth century. So, the gene can't have the native function of protecting against chlorhexidine. It's a side reaction that helps the bacteria.



Researchers looked at what other compounds are transported by AceI and its relations, collectively known as Proteobacterial Antimicrobial Compound Efflux (PACE) proteins.
They found good news and bad news. The bad news is that PACE proteins are likely to be future engines of antimicrobial resistance. The good news is that their ability to transport a wide range of substances means that they could be utilised in the manufacture of ‘petroleum-free’ polymers such as nylon.

Comments