Education Information: Cardiff achieves ‘Champion’ status for gender equality in physics  |  Parent Interventions: Online survey to assess needs of children and young people with cancer   |  Parent Interventions: Study links severe childhood deprivation to difficulties in adulthood  |  Parent Interventions: New study aims to learn the lessons of homeschooling  |  Teacher Insights: Using e-learning to raise biosecurity awareness  |  National Edu News: Science and Technology in finding solutions to combat COVID-19  |  National Edu News: Ek Bharat Shreshtha Bharat programme  |  Health Monitor: Beware of Hepatitis D, It can Lead to Hepatocellular Carcinoma  |  Teacher Insights: Education project to understand Birmingham learning at home during COVID-19  |  Education Information: UoG launches new onlines to meet some of the challenges of Covid-19  |  Teacher Insights: Professor Woolfson awarded Humboldt Research Prize  |  Parent Interventions: Parents paying heavy price for lockdown  |  Teacher Insights: Great Science Share brings science investigations into homes  |  Education Information: App will reduce high risk of falls during and after Lockdown  |  Education Information: University of Manchester to decarbonise its investment portfolio  |  
September 13, 2019 Friday 12:24:09 PM IST

Clue to make green polymers

Science Innovations



The molecular machinery used by bacteria to resist chemicals designed to kill them could also help produce precursors for a new generation of nylon and other polymers, according to new research by scientists from Macquarie University, Australia, and the University of Leeds, UK.

Bacteria that are unaffected by antiseptics and antibiotics, often termed ‘superbugs’, are a growing problem, but exactly how they develop resistance is not fully understood.

The gene that encodes the Ace I protein is old, but chlorhexidine was only created in the twentieth century. So, the gene can't have the native function of protecting against chlorhexidine. It's a side reaction that helps the bacteria.



Researchers looked at what other compounds are transported by AceI and its relations, collectively known as Proteobacterial Antimicrobial Compound Efflux (PACE) proteins.
They found good news and bad news. The bad news is that PACE proteins are likely to be future engines of antimicrobial resistance. The good news is that their ability to transport a wide range of substances means that they could be utilised in the manufacture of ‘petroleum-free’ polymers such as nylon.

Comments